

K-type
Programmable Controllers
OPERATION MANUAL
Revised July 1999

!

!

!

ii

Notice:
OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to property.

DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury.

WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury.

Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References
All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers
to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PC” means Programmable Controller and is not used as an abbreviation for any-
thing else.

Visual Aids
The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient operation
of the product.

1, 2, 3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

 OMRON, 1992
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permis-
sion of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is
constantly striving to improve its high-quality products, the information contained in this manual is subject to change
without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the informa-
tion contained in this publication.

iii

About this Manual:

The OMRON K-type Programmable Controllers offer an effective way to automate processing, man-
ufacturing, assembly, packaging, and many other processes to save time and money. Distributed con-
trol systems can also be designed to allow centralized monitoring and supervision of several separate
controlled systems. Monitoring and supervising can be done through a host computer, connecting the
controlled system to a data bank. It is thus possible to have adjustments in system operation made
automatically to compensate for requirement changes.

The K-type Units can utilize a number of additional Units including dedicated Special I/O Units that
can be used for specific tasks and Link Units that can be used to build more highly integrated sys-
tems.

The K-types are equipped with large programming instruction sets, data areas, and other features to
control processing directly. Programming utilizes ladder-diagram programming methods, which are
described in detail for those unfamiliar with them.

This manual describes the characteristics and abilities of the K-types programming operations, in-
structions, and other aspects of operation and preparation that demand attention. Before attempting
to operate the PC, thoroughly familiarize yourself with the information contained herein. Hardware
information is provided in detail in the Installation Guide. A table of other manuals that can be used in
combination with this manual is provided at the end of Section 1 Introduction.

Section 1 Introduction explains the background and some of the basic terms used in ladder-diagram
programming. It also provides an overview of the process of programming and operating a PC and
explains basic terminology used with OMRON PCs. Descriptions of peripheral devices used with the
K-types and a table of other manuals available to use with this manual for special PC applications are
also provided.

Section 2 Hardware Considerations explains basic aspects of the overall PC configuration and de-
scribes the indicators that are referred to in other sections of this manual.

Section 3 Memory Areas takes a look at the way memory is divided and allocated and explains the
information provided there to aid in programming. It also explains how I/O is managed in memory and
how bits in memory correspond to specific I/O points.

Section 4 Programming explains the basics of writing and inputting the ladder-diagram program,
looking at the elements that make up the ‘ladder’ part of a ladder-diagram program and explaining
how execution of this program is controlled and the methods required to input it input the PC. Sec-
tion 5 Instruction Set then goes on to describe individually all of the instructions used in program-
ming, while Section 6 Program Execution T iming explains the scanning process used to execute
the program and tells how to coordinate inputs and outputs so that they occur at the proper times.

Section 7 Debugging and Execution provides the Programming Console procedures used to debug
the program and to monitor and control system operation.

Finally, Section 8 T roubleshooting provides information on system error indications and other
means of reducing system down time. Information in this section is also necessary when debugging a
program.

The Appendices provide tables of standard OMRON products available for the K-types, reference
tables of instructions and Programming Console operations, and other information helpful in PC op-
eration.

WARNING Failure to read and understand the information provided in this manual may result in
personal injury or death, damage to the product, or product failure. Please read each
section in its entirety and be sure you understand the information provided in the section
and related sections before attempting any of the procedures or operations given.

!

v

TABLE OF CONTENTS

PRECAUTIONS ix.
1 Intended Audience x.
2 General Precautions x.
3 Safety Precautions x.
4 Operating Environment Precautions x.
5 Application Precautions xi.

SECTION 1 – Background 1.
1-1 Introduction 2.
1-2 Relay Circuits: The Roots of PC Logic 2.
1-3 PC Terminology 3.
1-4 OMRON Product Terminology 3.
1-5 Overview of PC Operation 4.
1-6 Peripheral Devices 5.
1-7 Available Manuals 6.

SECTION 2 – Hardware Considerations 7.
2-1 Introduction 8.
2-2 Indicators 8.
2-3 PC Configuration 8.

SECTION 3 – Memory Areas 9.
3-1 Introduction 10.
3-2 Data Area Structure 10.
3-3 Internal Relay (IR) Area 12.
3-4 Special Relay (SR) Area 21.

3-4-1 Battery Alarm Flag 21.
3-4-2 Cycle Time Error Flag 21.
3-4-3 High-speed Drum Counter Reset 21.
3-4-4 Clock Pulse Bits 21.
3-4-5 Error Flag (ER) 22.
3-4-6 Step Flag 22.
3-4-7 Always OFF, Always ON Flags 22.
3-4-8 First Cycle Flag 22.
3-4-9 Arithmetic Flags 22.

3-5 Data Memory (DM) Area 23.
3-6 Holding Relay (HR) Area 23.
3-7 Timer/Counter (TC) Area 23.
3-8 Temporary Relay (TR) Area 24.

SECTION 4 – Writing and Inputting the Program 25.
4-1 Introduction 26.
4-2 Instruction Terminology 26.
4-3 The Ladder Diagram 27.

4-3-1 Basic Terms 28.
4-3-2 Mnemonic Code 28.
4-3-3 Ladder Instructions 30.
4-3-4 OUT and OUT NOT 32.
4-3-5 The END Instruction 32.
4-3-6 Logic Block Instructions 32.
4-3-7 Coding Multiple Right-hand Instructions 39.
4-3-8 Branching Instruction Lines 39.
4-3-9 Jumps 43.

Table of contents

vi

4-4 The Programming Console 44.
4-4-1 The Keyboard 44.
4-4-2 PC Modes 45.

4-5 Preparation for Operation 46.
4-5-1 Entering the Password 47.
4-5-2 Clearing Memory 47.
4-5-3 Clearing Error Messages 49.

4-6 Inputting, Modifying, and Checking the Program 49.
4-6-1 Setting and Reading from Program Memory Address 50.
4-6-2 Inputting or Overwriting Programs 51.
4-6-3 Checking the Program 53.
4-6-4 Displaying the Cycle Time 54.
4-6-5 Program Searches 55.
4-6-6 Inserting and Deleting Instructions 57.

4-7 Controlling Bit Status 59.
4-7-1 DIFFERENTIATE UP and DIFFERENTIATE DOWN 59.
4-7-2 KEEP 60.
4-7-3 Self-maintaining Bits (Seal) 60.

4-8 Work Bits (Internal Relays) 61.
4-9 Programming Precautions 63.
4-10 Program Execution 65.

SECTION 5 – Instruction Set 67.
5-1 Introduction 68.
5-2 Notation 68.
5-3 Instruction Format 68.
5-4 Data Areas, Definer Values, and Flags 69.

5-4-1 Coding Other Instructions 69.
5-5 Ladder Diagram Instructions 73.

5-5-1 LOAD, LOAD NOT, AND, AND NOT, OR, and OR NOT 73.
5-5-2 AND LOAD and OR LOAD 74.

5-6 Bit Control Instructions 75.
5-6-1 OUTPUT and OUTPUT NOT – OUT and OUT NOT 75.
5-6-2 DIFFERENTIATE UP and DIFFERENTIATE DOWN –

DIFU(13) and DIFD(14) 75.
5-6-3 KEEP – KEEP(11) 77.

5-7 INTERLOCK and INTERLOCK CLEAR – IL(02) and ILC(03) 78.
5-8 JUMP and JUMP END – JMP(04) and JME(05) 80.
5-9 END – END(01) 81.
5-10 NO OPERATION – NOP(00) 81.
5-11 Timer and Counter Instructions 82.

5-11-1 TIMER – TIM 83.
5-11-2 HIGH-SPEED TIMER – TIMH(15) 86.
5-11-3 Analog Timer Unit 87.
5-11-4 COUNTER – CNT 90.
5-11-5 REVERSIBLE COUNTER – CNTR(12) 93.
5-11-6 HIGH-SPEED DRUM COUNTER – HDM(61) 94.
5-11-7 REVERSIBLE DRUM COUNTER – RDM(60) 103.

5-12 Data Shifting 106.
5-12-1 SHIFT REGISTER – SFT(10) 106.
5-12-2 REVERSIBLE SHIFT REGISTER – SFTR(84) 109.
5-12-3 WORD SHIFT – WSFT(16) 110.

5-13 Data Movement 111.
5-13-1 MOVE – MOV(21) 111.
5-13-2 MOVE NOT – MVN(22) 112.

5-14 DATA COMPARE – CMP(20) 112.
5-15 Data Conversion 115.

5-15-1 BCD-TO- BINARY – BIN(23) 115.

Table of contents

vii

5-15-2 BINARY-TO-BCD – BCD(24) 115.
5-15-3 4-TO-16 DECODER – MLPX(76) 116.
5-15-4 16-TO-4 ENCODER – DMPX(77) 118.

5-16 BCD Calculations 120.
5-16-1 BCD ADD – ADD(30) 120.
5-16-2 BCD SUBTRACT – SUB(31) 122.
5-16-3 BCD MULTIPLY – MUL(32) 123.
5-16-4 BCD DIVIDE – DIV(33) 124.
5-16-5 SET CARRY – STC(40) 125.
5-16-6 CLEAR CARRY – CLC(41) 125.

5-17 Subroutines 126.
5-17-1 SUBROUTINE DEFINE and SUBROUTINE RETURN

SBN(92)/RET(93) 126.
5-17-2 SUBROUTINE ENTRY – SBS(91) 126.

5-18 Step Instructions 128.
5-18-1 STEP DEFINE and STEP START – STEP(08)/SNXT(09) 128.

5-19 Special Instructions 135.
5-19-1 I/O REFRESH – IORF(97) 135.
5-19-2 END WAIT – ENDW(62) 135.
5-19-3 NOTATION INSERT – NETW(63) 136.

SECTION 6 – Program Execution Timing 137.
6-1 Introduction 138.
6-2 Cycle Time 139.
6-3 Calculating Cycle Time 141.

6-3-1 Single PC Unit 141.
6-3-2 PC with Additional Units 142.

6-4 Instruction Execution Times 143.
6-5 I/O Response Time 145.

SECTION 7 – Program Debugging and Execution 147.
7-1 Introduction 148.
7-2 Debugging 148.
7-3 Monitoring Operation and Modifying Data 149.

7-3-1 Bit/Digit Monitor 150.
7-3-2 Force Set/Reset 153.
7-3-3 Hexadecimal/BCD Data Modification 155.
7-3-4 Changing Timer/Counter SV 156.

7-4 Program Backup and Restore Operations 157.
7-4-1 Saving Program Memory Data 158.
7-4-2 Restoring or Comparing Program Memory Data 159.

SECTION 8 – Troubleshooting 161.
8-1 Introduction 162.
8-2 Reading and Clearing Errors and Messages 162.
8-3 Error Messages 162.
8-4 Error Flags 164.

Appendix 165.
A – Standard Models 165.
B – Programming Instructions and Execution Times 171.
C – Programming Console Operations 183.
D – Error and Arithmetic Flag Operation 189.
E – Binary–Hexadecimal–Decimal Table 191.
F – Word Assignment Recording Sheets 193.
G – Program Coding Sheet 199.

Glossary 201.

Index 215.

ix

PRECAUTIONS

This section provides general precautions for using the K-type Programmable Controllers (PCs) and related devices.

The information contained in this section is important for the safe and reliable application of Programmable Control-
lers. You must read this section and understand the information contained before attempting to set up or operate a PC
system.

1 Intended Audience x.
2 General Precautions x.
3 Safety Precautions x.
4 Operating Environment Precautions x.
5 Application Precautions xi.

!

!

!

!

!

5Application Precautions

x

1 Intended Audience
This manual is intended for the following personnel, who must also have knowl-
edge of electrical systems (an electrical engineer or the equivalent).

• Personnel in charge of installing FA systems.

• Personnel in charge of designing FA systems.

• Personnel in charge of managing FA systems and facilities.

2 General Precautions
The user must operate the product according to the performance specifications
described in the operation manuals.

Before using the product under conditions which are not described in the manual
or applying the product to nuclear control systems, railroad systems, aviation
systems, vehicles, combustion systems, medical equipment, amusement ma-
chines, safety equipment, and other systems, machines, and equipment that
may have a serious influence on lives and property if used improperly, consult
your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide the
systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating the Unit. Be
sure to read this manual before attempting to use the Unit and keep this manual
close at hand for reference during operation.

WARNING It is extremely important that a PC and all PC Units be used for the specified
purpose and under the specified conditions, especially in applications that can
directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PC System to the above-mentioned
applications.

3 Safety Precautions

WARNING Do not attempt to take any Unit apart while the power is being supplied. Doing so
may result in electric shock.

WARNING Do not touch any of the terminals or terminal blocks while the power is being
supplied. Doing so may result in electric shock.

WARNING Do not attempt to disassemble, repair, or modify any Units. Any attempt to do so
may result in malfunction, fire, or electric shock.

4 Operating Environment Precautions

Caution Do not operate the control system in the following locations:

• Locations subject to direct sunlight.

• Locations subject to temperatures or humidity outside the range specified in
the specifications.

• Locations subject to condensation as the result of severe changes in tempera-
ture.

!

!

!

!

5Application Precautions

xi

• Locations subject to corrosive or flammable gases.
• Locations subject to dust (especially iron dust) or salts.
• Locations subject to exposure to water, oil, or chemicals.
• Locations subject to shock or vibration.

Caution Take appropriate and sufficient countermeasures when installing systems in the
following locations:

• Locations subject to static electricity or other forms of noise.
• Locations subject to strong electromagnetic fields.
• Locations subject to possible exposure to radioactivity.
• Locations close to power supplies.

Caution The operating environment of the PC System can have a large effect on the lon-
gevity and reliability of the system. Improper operating environments can lead to
malfunction, failure, and other unforeseeable problems with the PC System. Be
sure that the operating environment is within the specified conditions at installa-
tion and remains within the specified conditions during the life of the system.

5 Application Precautions
Observe the following precautions when using the PC System.

WARNING Always heed these precautions. Failure to abide by the following precautions
could lead to serious or possibly fatal injury.

• Always ground the system to 100 Ω or less when installing the Units. Not con-
necting to a ground of 100 Ω or less may result in electric shock.

• Always turn OFF the power supply to the PC before attempting any of the fol-
lowing. Not turning OFF the power supply may result in malfunction or electric
shock.

• Mounting or dismounting I/O Units, CPU Units, Memory Cassettes, or any
other Units.

• Assembling the Units.
• Setting DIP switches or rotary switches.
• Connecting cables or wiring the system.
• Connecting or disconnecting the connectors.

Caution Failure to abide by the following precautions could lead to faulty operation of the
PC or the system, or could damage the PC or PC Units. Always heed these pre-
cautions.

• Fail-safe measures must be taken by the customer to ensure safety in the
event of incorrect, missing, or abnormal signals caused by broken signal lines,
momentary power interruptions, or other causes.

• Interlock circuits, limit circuits, and similar safety measures in external circuits
(i.e., not in the Programmable Controller) must be provided by the customer.

• Always use the power supply voltages specified in the operation manuals. An
incorrect voltage may result in malfunction or burning.

• Take appropriate measures to ensure that the specified power with the rated
voltage and frequency is supplied. Be particularly careful in places where the
power supply is unstable. An incorrect power supply may result in malfunction.

• Install external breakers and take other safety measures against short-circuit-
ing in external wiring. Insufficient safety measures against short-circuiting may
result in burning.

5Application Precautions

xii

• Do not apply voltages to the Input Units in excess of the rated input voltage.
Excess voltages may result in burning.

• Do not apply voltages or connect loads to the Output Units in excess of the
maximum switching capacity. Excess voltages or loads may result in burning.

• Disconnect the functional ground terminal when performing withstand voltage
tests. Not disconnecting the functional ground terminal may result in burning.

• Be sure that all the mounting screws, terminal screws, and cable connector
screws are tightened to the torque specified in the relevant manuals. Incorrect
tightening torque may result in malfunction.

• Leave the label attached to the Unit when wiring. Removing the label may re-
sult in malfunction if foreign matter enters the Unit.

• Remove the label after the completion of wiring to ensure proper heat dissipa-
tion. Leaving the label attached may result in malfunction.

• Use crimp terminals for wiring. Do not connect bare stranded wires directly to
terminals. Connection of bare stranded wires may result in burning.

• Wire all connections correctly.

• Double-check all wiring and switch settings before turning ON the power sup-
ply. Incorrect wiring may result in burning.

• Be sure that the terminal blocks, Memory Units, expansion cables, and other
items with locking devices are properly locked into place. Improper locking
may result in malfunction.

• Check the user program for proper execution before actually running it on the
Unit. Not checking the program may result in an unexpected operation.

• Confirm that no adverse effect will occur in the system before attempting any of
the following. Not doing so may result in an unexpected operation.

• Changing the operating mode of the PC.

• Force-setting/force-resetting any bit in memory.

• Changing the present value of any word or any set value in memory.

• Resume operation only after transferring to the new CPU Unit the contents of
the DM Area, HR Area, and other data required for resuming operation. Not
doing so may result in an unexpected operation.

• Do not pull on the cables or bend the cables beyond their natural limit. Doing
either of these may break the cables.

• Do not place objects on top of the cables or other wiring lines. Doing so may
break the cables.

• When replacing parts, be sure to confirm that the rating of a new part is correct.
Not doing so may result in malfunction or burning.

• Before touching a Unit, be sure to first touch a grounded metallic object in order
to discharge any static built-up. Not doing so may result in malfunction or dam-
age.

• Install the Units properly as specified in the operation manuals. Improper
installation of the Units may result in malfunction.

1

SECTION 1
Background

1-1 Introduction 2.
1-2 Relay Circuits: The Roots of PC Logic 2.
1-3 PC Terminology 3.
1-4 OMRON Product Terminology 3.
1-5 Overview of PC Operation 4.
1-6 Peripheral Devices 5.
1-7 Available Manuals 6.

2

1-1 Introduction
A Programmable Controller (PC) is basically a central processing unit (CPU)
containing a program and connected to input and output (I/O) devices (I/O
Devices) . The program controls the PC so that when an input signal from an
input device turns ON, the appropriate response is made. The response nor-
mally involves turning ON an output signal to some sort of output device. The
input devices could be photoelectric sensors, pushbuttons on control panels,
limit switches, or any other device that can produce a signal that can be input
into the PC. The output devices could be solenoids, switches activating indi-
cator lamps, relays turning on motors, or any other devices that can be acti-
vated by signals output from the PC.

For example, a sensor detecting a product passing by turns ON an input to
the PC. The PC responds by turning ON an output that activates a pusher
that pushes the product onto another conveyor for further processing. An-
other sensor, positioned higher than the first, turns ON a different input to
indicate that the product is too tall. The PC responds by turning on another
pusher positioned before the pusher mentioned above to push the too-tall
product into a rejection box.

Although this example involves only two inputs and two outputs, it is typical of
the type of control operation that PCs can achieve. Actually even this exam-
ple is much more complex than it may at first appear because of the timing
that would be required, i.e., “How does the PC know when to activate each
pusher?” Much more complicated operations, however, are also possible.
The problem is how to get the desired control signals from available inputs at
appropriate times.

Desired control sequences are input to the K-type PCs using a form of PC
logic called ladder-diagram programming. This manual is written to explain
ladder-diagram programming and to prepare the reader to program and oper-
ate the K-type PCs.

1-2 Relay Circuits: The Roots of PC Logic
PCs historically originate in relay-based control systems. And although the
integrated circuits and internal logic of the PC have taken the place of the
discrete relays, timers, counters, and other such devices, actual PC opera-
tion proceeds as if those discrete devices were still in place. PC control, how-
ever, also provides computer capabilities and consistency to achieve a great
deal more flexibility and reliability than is possible with relays.

The symbols and other control concepts used to describe PC operation also
come from relay-based control and form the basis of the ladder-diagram pro-
gramming method. Most of the terms used to describe these symbols and
concepts, however, originated as computer terminology.

The terminology used throughout this manual is somewhat different from re-
lay terminology, but the concepts are the same. The following table shows
the relationship between relay terms and the PC terms used for OMRON
PCs.

Relay term PC equivalent

contact input or condition

coil output or work bit

NO relay normally open condition

NC relay normally closed condition

Relay vs. PC Terminology

Relay Circuits: The Roots of PC Logic Section 1-2

3

Actually there is not a total equivalence between these terms, because the
term condition is used only to describe ladder diagram programs in general
and is specifically equivalent to one of certain basic instructions. The terms
input and output are not used in programming per se, except in reference to
I/O bits that are assigned to input and output signals coming into and leaving
the PC. Normally open conditions and normally closed conditions are ex-
plained in 4-3 The Ladder Diagram.

1-3 PC Terminology
Although also provided in the Glossary at the back of this manual, the follow-
ing terms are crucial to understanding PC operation and are thus explained
here as well.

When we refer to the PC, we are generally talking about the CPU and all of
the Units directly controlled by it through the program. This does not include
the I/O devices connected to PC inputs and outputs.

If you are not familiar with the terms used above to describe a PC, refer to
Section 2 Hardware Considerations for explanations.

A device connected to the PC that sends a signal to the PC is called an input
device ; the signal it sends is called an input signal . A signal enters the PC
through terminals or through pins on a connector on a Unit. The place where
a signal enters the PC is called an input point . This input point is allocated a
location in memory that reflects its status, i.e., either ON or OFF. This mem-
ory location is called an input bit . The CPU in its normal processing cycle
monitors the status of all input points and turns ON and OFF corresponding
input bits accordingly.

There are also output bits in memory that are allocated to output points on
Units through which output signals are sent to output devices , i.e., an out-
put bit is turned ON to send a signal to an output device through an output
point. The CPU periodically turns output points ON and OFF according to the
status of the output bits.

These terms are used when describing different aspects of PC operation.
When programming, one is concerned with what information is held in mem-
ory, and so I/O bits are referred to. When describing the Units that connect
the PC to the controlled system and the places on these Units where signals
enter and leave the PC, I/O points are referred to. When wiring these I/O
points, the physical counterparts of the I/O points, either terminals or connec-
tor pins, are referred to. When describing the signals that enter or leave the
system, reference is made to input signals and output signals, or sometimes
just inputs and outputs.

The Control System includes the PC and all I/O devices it uses to control an
external system. A sensor that provides information to achieve control is an
input device that is clearly part of the Control System. The controlled system
is the external system that is being controlled by the PC program through
these I/O devices. I/O devices can sometimes be considered part of the con-
trolled system, e.g., a motor used to drive a conveyor belt.

1-4 OMRON Product Terminology
OMRON products are divided into several functional groups that have ge-
neric names. Appendix A Standard Models list products by these groups.
The term Unit is used to refer to all OMRON PC products, depending on the
context.

The largest group of OMRON products is I/O Units . I/O Units come in a vari-
ety of point quantities and specifications.

PC

Inputs and Outputs

Controlled System and
Control System

OMRON Product Terminology Section 1-4

4

Special I/O Units are dedicated Units that are designed to meet specific
needs. These include Analog Timer Units and Analog I/O Units.

Link Units are used to create Link Systems that link more than one PC or
link a single PC to remote I/O points. Link Units include I/O Link Units that
are used to connect K-type PCs to Remote I/O Systems controlled by a larg-
er PC (e.g. C1000H) and Host Link Units.

Other product groups include Programming Devices and Peripheral De-
vices .

1-5 Overview of PC Operation
The following are the basic steps involved in programming and operating a
K-type PC. Assuming you have already purchased one or more of these
PCs, you must have a reasonable idea of the required information for steps
one and two, which are discussed briefly below. This manual is written to ex-
plain steps three through six, eight, and nine. The section(s) of this manual
that provide relevant information are listed with each of these steps.

1, 2, 3... 1. Determine what the controlled system must do, in what order, and at
what times.

2. Determine what Units will be required. Refer to the Installation Guide. If
a Link System is required, refer to the required System Manual(s).

3. On paper, assign all input and output devices to I/O points on Units and
determine which I/O bits will be allocated to each. If the PC includes
Special I/O Units or Link Systems, refer to the individual Operation
Manuals or System Manuals for details on I/O bit allocation. (Section 3
Memory Areas)

4. Using relay ladder symbols, write a program that represents the se-
quence of required operations and their inter-relationships. Be sure to
also program appropriate responses for all possible emergency situ-
ations. (Section 4 Writing and Inputting the Program, Section 5 Instruc-
tion Set, and Section 6 Program Execution Timing)

5. Input the program and all required operating parameters into the PC.
(Section 4 Writing and Inputting the Program)

6. Debug the program, first to eliminate any syntax errors and then to elim-
inate execution errors. (Section 4 Writing and Inputting the Program,
Section 7 Program Debugging and Execution, and Section 8
Troubleshooting)

7. Wire the PC to the controlled system. This step can actually be started
as soon as step 3 has been completed. Refer to the Installation Guide
and to Operation Manuals and System Manuals for details on individual
Units.

8. Test the program in an actual control situation and fine tune it if required.
(Section 7 Program Debugging and Execution and Section 8
Troubleshooting)

9. Record two copies of the finished program on masters and store them
safely in different locations. (Section 7 Program Debugging and Execu-
tion)

Designing the Control System is the first step in automating any process. A
PC can be programmed and operated only after the overall Control System is
fully understood. Designing the Control System requires a thorough under-
standing of the system that is to be controlled. The first step in designing a
Control System is thus determining the requirements of the controlled sys-
tem.

Control System Design

Overview of PC Operation Section 1-5

5

The first thing that must be assessed is the number of input and output points
that the controlled system will require. This is done by identifying each device
that is to send an input signal to the PC or which is to receive an output sig-
nal from the PC. Keep in mind that the number of I/O points available de-
pends on the configuration of the PC. Refer to 3-3 Internal Relay (IR) Area
for details on I/O capacity and assigning I/O bits to I/O points.

Next, determine the sequence in which control operations are to occur and
the relative timing of the operations. Identify the physical relationships be-
tween the I/O devices as well as the kinds of responses that should occur
between them.

For instance, a photoelectric switch might be functionally tied to a motor by
way of a counter within the PC. When the PC receives an input from a start
switch, it could start the motor. The PC could then stop the motor when the
counter has received five input signals from the photoelectric switch.

Each of the related tasks must be similarly determined, throughout the entire
control operation.

The actual Units that will be mounted must be determined according to the
requirements of the I/O devices. This will include actual hardware specifica-
tions, such as voltage and current levels, as well as functional considera-
tions, such as those that require Special I/O Units or Link Systems. In many
cases, Special I/O Units or Link Systems can greatly reduce the program-
ming burden. Details on these Units and Link Systems are available in indi-
vidual Operation Manuals and System Manuals.

Once the entire Control System has been designed, the task of program-
ming, debugging, and operation as described in the remaining sections of
this manual can begin.

1-6 Peripheral Devices
The following peripheral devices can be used in programming, either to input/
debug/monitor the PC program or to interface the PC to external devices to
output the program or memory area data. Model numbers for all devices
listed below are provided in Appendix A Standard Models. OMRON product
names have been placed in bold when introduced in the following descrip-
tions.

A Programming Console is the simplest form of programming device for OM-
RON PCs. Although a Programming Console Adapter is sometimes re-
quired, all Programming Consoles are connected directly to the CPU without
requiring a separate interface. The Programming Console also functions as
an interface to output programs to a standard cassette tape recorder.

Various types of Programming Console are available, including both
CPU-mounting and Handheld models. Programming Console operations are
described later in this manual.

A Peripheral Interface Unit is required to interface the GPC to the PC.

The GPC also functions as an interface to output programs directly to a stan-
dard cassette tape recorder. A PROM Writer , Floppy Disk Interface Unit , or
Printer Interface Unit can be directly mounted to the GPC to output pro-
grams directly to an EPROM chip, floppy disk drive, or printing device.

LSS is designed to run on IBM AT/XT compatibles to enable nearly all of the
operations available on the GPC. It also offers extensive documentation ca-
pabilities.

Input/Output Requirements

Sequence, Timing, and
Relationships

Unit Requirements

Programming Console

Graphic Programming
Console: GPC

Ladder Support Software:
LSS

Peripheral Devices Section 1-6

6

A Host Link Unit is required to interface a computer running LSS to the PC.
Using an Optical Host Link Unit also enables the use of optical fiber cable to
connect the FIT to the PC. Wired Host Link Units are available when desired.
(Although FIT does not have optical connectors, conversion to optical fiber
cable is possible by using Converting Link Adapters.)

The FIT is an OMRON computer with specially designed software that allows
you to perform all of the operations that are available with the GPC or LSS.
Programs can also be output directly to an EPROM chip, floppy disk drive, or
printing device without any additional interface units. The FIT has an EPROM
writer and two 3.5” floppy disk drives built in.

A Peripheral Interface Unit or Host Link Unit is required to interface the
FIT to the PC. Using an Optical Host Link Unit also enables the use of optical
fiber cable to connect the FIT to the PC. Wired Host Link Units are available
when desired. (Although FIT does not have optical connectors, conversion to
optical fiber cable is possible by using Converting Link Adapters.)

Other than its applications described above, the PROM Writer can be
mounted to the PC’s CPU to write programs to EPROM chips.

Other than its applications described above, the Floppy Disk Interface Unit
can be mounted to the PC’s CPU to interface a floppy disk drive and write
programs onto floppy disks.

Other than its applications described above, the Printer Interface Unit can be
mounted to the PC’s CPU to interface a printer or X-Y plotter to print out pro-
grams in either mnemonic or ladder-diagram form.

1-7 Available Manuals
The following table lists other manuals that may be required to program and/
or operate the K-type PCs. Operation Manuals and/or Operation Guides are
also provided with individual Units and are required for wiring and other
specifications.

Name Cat. No. Contents

Installation Guide W147 Hardware specifications

Data Access Console Operation Guide W173 Procedures for monitoring and manipulating data.

GPC Operation Manual W84 Programming procedures for the GPC (Graphics
Programming Console)

FIT Operation Manual W150 Programming procedures for using the FIT (Factory Intelligent
Terminal

LSS Operation Manual W237 Programming procedures for using LSS (Ladder Support
Software)

Printer Interface Unit Operation Guide W107 Procedures for interfacing a PC to a printer

PROM Writer Operation Guide W155 Procedures for writing programs to EPROM chips

Floppy Disk Interface Unit Operation Guide W119 Procedures for interfacing a PC to a floppy disk drive

Optical Remote I/O System Manual W136 Information on building an Optical Remote I/O System to
enable remote I/O capability

Host Link System Manual W143 Information on building a Host Link System to manage PCs
from a ‘host’ computer

K-type Analog I/O Units Operation Guide W122 Hardware and software information on using Analog I/O Units
with the K-type PCs.

Factory Intelligent Terminal:
FIT

PROM Writer

Floppy Disk Interface Unit

Printer Interface Unit

Available Manuals Section 1-7

7

SECTION 2
Hardware Considerations

2-1 Introduction 8.
2-2 Indicators 8.
2-3 PC Configuration 8.

8

2-1 Introduction
This section provides information on hardware aspects of K-type PCs that
are relevant to programming and software operation. These include indica-
tors on the CPU and basic PC configuration. This information is covered in
detail in the Installation Guide.

2-2 Indicators
CPU indicators provide visual information on the general operation of the PC.
Using the flags and other error indicators provided in the memory data areas,
although not a substitute for proper error programming, provides ready con-
firmation of proper operation.

CPU indicators are located on the front right hand side of the PC adjacent to
the I/O expansion slot and are described in the following table.

Indicator Function

POWER Lights when power is supplied to the CPU.

RUN Lights when the CPU is operating normally.

ERR Lights when an error is discovered in system error diagnosis
operations. When this indicator lights, the RUN indicator will go
off, CPU operation will be stopped, and all outputs from the PC
will be turned OFF.

ALARM Lights when an error is discovered in system error diagnosis
operations. PC operation will continue.

2-3 PC Configuration
The system must contain a K-type CPU and may additionally contain an Ex-
pansion I/O Unit, Special I/O Units and/or I/O Link Units.

The Expansion I/O Units are not a required part of the basic system and are
used to increase the number of I/O points available. Special I/O Units and I/O
Link Units are used to reduce programming complexity.

CPU Indicators

PC Configuration Section 2-3

9

SECTION 3
Memory Areas

3-1 Introduction 10.
3-2 Data Area Structure 10.
3-3 Internal Relay (IR) Area 12.
3-4 Special Relay (SR) Area 21.

3-4-1 Battery Alarm Flag 21.
3-4-2 Cycle Time Error Flag 21.
3-4-3 High-speed Drum Counter Reset 21.
3-4-4 Clock Pulse Bits 21.
3-4-5 Error Flag (ER) 22.
3-4-6 Step Flag 22.
3-4-7 Always OFF, Always ON Flags 22.
3-4-8 First Cycle Flag 22.
3-4-9 Arithmetic Flags 22.

3-5 Data Memory (DM) Area 23.
3-6 Holding Relay (HR) Area 23.
3-7 Timer/Counter (TC) Area 23.
3-8 Temporary Relay (TR) Area 24.

10

3-1 Introduction
Various types of data are required to achieve effective and correct control. To
facilitate managing this data, the PC is provided with various memory areas
for data, each of which performs a different function. The areas generally ac-
cessible by the user for use in programming are classified as data areas .
The other memory area is the Program Memory, where the user’s program is
actually stored.

This section describes these areas individually and provides information that
will be necessary to use them. The name, acronym, range, and function of
each area are summarized in the following table. All but the last one of these
are data areas. All memory areas are normally referred to by their acronyms.

Area Acronym Range Function

Internal Relay
area

IR Words: 00 to 18 (bits 00 to 07)
Bits: 0000 to 1807

Used to manage I/O points, control other bits,
timers, and counters, to temporarily store data.

Special Relay
area

SR Words: 18 (bits 08 to 15) and
19 (bits 00 to 07)

Bits: 1808 to 1907

Contains system clocks, flags, control bits, and
status information.

Data Memory
area

DM DM 00 to DM 63
(words only)

Used for internal data storage and manipulation.

Holding Relay
area

HR Words: HR 0 to HR 9
Bits: HR 000 to HR 915

Used to store data and to retain the data values
when the power to the PC is turned off.

Timer/Counter
area

TC TC 00 to TC 47 (TC numbers are
used to access other information)

Used to define timers and counters and to access
completion flags, PV, and SV for them.

Temporary Relay
area

TR TR 00 to TR 07 (bits only) Used to temporarily store execution conditions.

Program Memory UM UM: 1,194 words. Contains the program executed by the CPU.

When some bits and words in certain data areas are not used for their in-
tended purpose, they can be used in programming as required to control
other bits. Words and bits available for use in this fashion are called work bits
and work words. Most, but not all, unused bits can be used as work bits.
Those that can be are specified by area in the remainder of this section. Ac-
tual application of work bits and work words is described in Section 4 Writing
and Inputting the Program.

Some data areas contain flags and/or control bits. Flags are bits that are
automatically turned ON and OFF to indicate status of one form or another.
Although some flags can be turned ON and OFF by the user, most flags can
be read only; they cannot be controlled directly.

Control bits are bits turned ON and OFF by the user to control specific as-
pects of operation. Any bit given a name using the word bit rather than the
word flag is a control bit, e.g., Restart Bits are control bits.

3-2 Data Area Structure
When designating a data area, the acronym for the area is always required
for any but the IR and SR areas. Although the acronyms for the IR and SR
areas are often given for clarity, they are not required and not input when
programming. Any data area designation without an acronym is assumed to
be in either the IR and SR area. Because IR and SR addresses run consecu-
tively, the word or bit addresses are sufficient to differentiate these two areas.

An actual data location within any data area but the TC area is designated by
its address. The address designates the bit and/or word within the area
where the desired data is located. The TR area consists of individual bits

Work Bits and Words

Flags and Control Bits

Data Area Structure Section 3-2

11

used to store execution conditions at branching points in ladder diagrams.
The use of TR bits is described in Section 4 Writing and Inputting the Pro-
gram. The TC area consists of TC numbers, each of which is used for a spe-
cific timer or counter defined in the program. Refer to 3-7 Timer/Counter (TC)
Area for more details on TC numbers and to 5-11 Timer and Counter Instruc-
tions for information on actual application.

The rest of the data areas (i.e., the IR, SR, HR and DM areas) consist of
words, each of which consists of 16 bits numbered 00 through 15 from right
to left. IR words 00 and 01 are shown below with bit numbers. Here, the con-
tent of each word is shown as all zeros. Bit 00 is called the rightmost bit; bit
15, the leftmost bit.

Bit number 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

IR word 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IR word 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The term least significant is often used for rightmost; the term most signifi-
cant, for leftmost. These terms have not been used in this manual because a
single word is often split into two or more parts, with each part used for differ-
ent parameters or operands, sometimes even with bits in another word.
When this is done, the rightmost bits in a word may actually be the most sig-
nificant bits, i.e., the leftmost bits, of a value with other bits, i.e., the least sig-
nificant bits, contained in another word.

The DM area is accessible by word only; you cannot designate an individual
bit within a DM word. Data in the IR, SR and HR areas is accessible either by
bit or by word, depending on the instruction in which the data is being used.

To designate one of these areas by word, all that is necessary is the acronym
(if required) and the one or two-digit word address. To designate an area by
bit, the word address is combined with the bit number as a single three- or
four-digit address. The examples in the following table should make this
clear. The two rightmost digits of a bit designation must indicate a bit be-
tween 00 and 15.

The same TC number can be used to designate either a word containing the
present value (PV) of the timer or counter or a bit that functions as the com-
pletion flag for the timer or counter. This is explained in more detail in 3-7
Timer/Counter (TC) Area.

Area Word designation Bit designation

IR 00 0015 (leftmost bit in word 00)

SR 19 1900 (rightmost bit in word 19)

DM DM 10 Not possible

TC TC 46 (designates PV) TC 46 (designates completion flag)

Word data input as decimal values is stored in binary-coded decimal (BCD)
code; word data input as hexadecimal is stored in binary form. Because each
word contains 16 bits, each four bits of a word represents one digit: either a
hexadecimal digit equivalent numerically to the binary bits or decimal. One
word of data thus contains four digits, which are numbered from right to left.
These digit numbers and the corresponding bit numbers for one word are
shown below.

Bit number

Contents 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Digit number 3 2 1 0

Note

Data Structure

Data Area Structure Section 3-2

12

When referring to the entire word, the digit numbered 0 is called the right-
most digit; the one numbered 3, the leftmost digit.

When inputting data into data areas, it must be input in the proper form for
the intended purpose. This is no problem when designating individual bits,
which are merely turned ON (equivalent to a binary value of 1) or OFF (a bi-
nary value of 0). When inputting word data, however, it is important to input it
either as decimal or as hexadecimal, depending on what is called for by the
instruction it is to be used for. Section 5 Instruction Set specifies when a par-
ticular form of data is required for an instruction.

Binary and hexadecimal can be easily converted back and forth because
each four bits of a binary number is numerically equivalent to one digit of a
hexadecimal number. The binary number 0101111101011111 is converted to
hexadecimal by considering each set of four bits in order from the right. Bi-
nary 1111 is hexadecimal F; binary 0101 is hexadecimal 5. The hexadecimal
equivalent would thus be 5F5F, or 24,415 in decimal (163 x 5 + 162 x 15 + 16
x 5 + 15).

Decimal and BCD can also be easily converted back and forth. In this case,
each BCD digit (i.e., each four BCD bits) is numerically equivalent of the cor-
responding decimal digit. The BCD bits 0101011101010111 are converted to
decimal by considering each four bits from the right. Binary 0101 is decimal
5; binary 0111 is decimal 7. The decimal equivalent would thus be 5,757.
Note that this is not the same numeric value as the hexadecimal equivalent
of 0101011101010111, which would be 5,757 hexadecimal, or 22,359 in deci-
mal (163 x 5 + 162 x 7 + 16 x 5 + 7).

Because the numeric equivalent of each four BCD binary bits must be
equivalent to a decimal value, any four bit combination numerically greater
then 9 cannot be used, e.g., 1011 is not allowed because it is numerically
equivalent to 11, which cannot be expressed as a single digit in decimal nota-
tion. The binary bits 1011 are of course allowed in hexadecimal and they are
equivalent to the hexadecimal digit C.

There are instructions provided to convert data in either direction between
BCD and hexadecimal. Refer to 5-15 Data Conversion for details. Tables of
binary equivalents to hexadecimal and BCD digits are provided in the appen-
dices for reference.

Decimal points are used in timers only. The least significant digit represents
tenths of a second. All arithmetic instructions operate on integers only.

3-3 Internal Relay (IR) Area
The IR area is used both to control I/O points and as work bits to manipulate
and store data internally. It is accessible both by bit and by word. Those
words that can be used to control I/O points are called I/O words. Bits in I/O
words are called I/O bits.

The number of I/O words varies between the K-type PCs. As shown, the IR
area is comprised of three main sections. These are input words, output
words and work words (work bits). Work bits are used in programming to ma-
nipulate data and control other bits. IR area work bits are reset when power
is interrupted or PC operation is stopped.

Converting Different Forms
of Data

Decimal Points

Internal Relay (IR) Area Section 3-3

13

The maximum number of available I/O bits is 16 (bits/word) times the number
of I/O words. I/O bits are assigned to input or output points as described in
Word Allocations.

If a Unit brings inputs into the PC, the bit assigned to it is an input bit; if the
Unit sends an output from the PC, the bit is an output bit. To turn on an out-
put, the output bit assigned to it must be turned ON. When an input turns on,
the input bit assigned to it also turns ON. These facts can be used in the pro-
gram to access input status and control output status through I/O bits.

I/O bits that are not assigned to I/O points can be used as work bits, unless
otherwise specified in Word Allocations.

Input bits can directly input external signals to the PC and can be used in any
order in programming. Each input bit can also be used in as many instruc-
tions as required to achieve effective and proper control. They cannot be
used in instructions that control bit status, e.g., the OUTPUT, DIFFERENTI-
ATION UP, and KEEP instructions.

Output bits are used to output program execution results and can be used in
any order in programming. Because outputs are refreshed only once during
each cycle (i.e. once each time the program is executed), any output bit can
be used in only one instruction that controls its status, including OUT, OUT
NOT, KEEP(11), DIFU(13), DIFD(14), and SFT(10). If an output bit is used in
more than one such instruction, only the status determined by the last in-
struction will actually be output from the PC. See 5-12-1 SHIFT REGISTER -
SFT(10) for an example of an output bit controlled by two instructions.

The maximum number of words available for I/O within the IR area is 10,
numbered 00 through 09. The remaining words (10 through 18) are to be
used for work bits. (Note that with word 18, only the bits 00 through 07 are
available for work bits although some of the remaining bits are required for
special purposes when RDM is used).

The actual number of bits that can be used as I/O bits is determined by the
model of the CPU and the PC configuration. There are different models of
Expansion I/O Units and Special I/O Units and I/O Link Units which can be
connected to any of the CPUs. Each CPU model provides a particular num-
ber of I/O bits and each Expansion I/O Unit, Special I/O Unit or I/O Link Unit
provides a particular number of I/O bits. Configuration charts for the possible
combinations of CPUs and Units are included later in this section. Refer to
those to determine the actual available I/O bits.

Within CPUs the I/O input words are always even numbered and the output
words are always odd numbered. The general rule when connecting Expan-
sion I/O Units to CPUs is that the first available word for the Expansion I/O
Unit (whether input or output or a combination) is one more than the last I/O
word of the CPU. If the Expansion I/O Unit is only either input or output (and
not both) then the I/O words provided by the Expansion I/O Unit are allocated
consecutively and the remaining words up to word 09 may be used for work
bits. If the Expansion I/O Unit provides both input and output words then the
words are allocated alternatively (input words always having even numbers)
until all I/O words provided by the Expansion I/O Unit are allocated. The re-
maining words up to word 09 may then be used for work bits. Note that when
a portion of an input word is not allocated to an input point then that portion
may be used for work bits.

I/O Words

Input Bit Usage

Output Bit Usage

Word Allocations

Internal Relay (IR) Area Section 3-3

14

The following table shows which bits can be used as I/O bits in each of the
K-type CPUs. Bits in the shaded areas can be used as work bits but not as
output bits.

08

09

10

11

12

13

14

15

Word 00

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word 01

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word 00

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word 01

C20K

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word 00

00

01

02

03

04

05

06

07

Word 02

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word 01

00

01

02

03

04

05

06

07

Word 03

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word 00

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word 02

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word 01

00

01

02

03

04

05

06

07

Word 03

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Model Input bits Output bits

C28K

C40K

C60K

08

09

10

11

indicates words that cannot be used for I/O,
but can be used as work bits.

Cannot
be

used.

Cannot
be

used.

I/O Bits Available in CPUs

Internal Relay (IR) Area Section 3-3

15

The following table shows which bits can be used as I/O bits in each of the
Expansion I/O Units. Bits in the shaded areas can be used as work bits but
not as output bits. The word addresses depend on the CPU that the Expan-
sion I/O Unit is coupled to. In all cases the first Expansion I/O Unit address
for input and output words is one more than the last CPU address for input
and output words. For example, the last CPU word address for a C40K CPU
is 03 and hence the first input or output word address for any of the Expan-
sion I/O Units coupled to a C40K CPU will be 04. In the tables below “n” is
the last CPU word allocated as an input or output word.

There are several models for some of the Units listed below. A blank space
(_) in the model number indicates that any of the applicable model numbers
could be inserted here.

08

09

10

11

12

13

14

15

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word (n+1)

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

00

01

02

03

04

05

06

07

Word (n + 2)

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

00

01

02

03

04

05

06

07

Word (n + 3)

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word (n + 2)

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

00

01

02

03

04

05

06

07

Word (n + 3)

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word (n + 1)

00

01

02

03

04

05

06

07

Word (n + 1)

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word (n + 1)

00

01

02

03

Word (n + 1)

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word (n + 2)

08

09

10

11

12

13

14

15

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word (n + 1)

Model Input bits Output bits Model Input bits Output bits

C20P
C16P
-Ij-j

C28P

C40P

C60P

C16P
-Oj-j

C4K-Ij

C4K-Oj

C4K-TM
Cannot
be used

Word (n+1)

Word (n+1)

Word (n+1)

Word (n + 2)

Word (n + 2)

Word (n + 4)

Word (n + 4)

08

09

10

11

indicates words that cannot be used for I/O,
but can be used as work bits.

00

01

02

03

Cannot
be used

Cannot
be

used.

Cannot
be

used.

I/O Bits Available in
Expansion I/O Units

Internal Relay (IR) Area Section 3-3

16

A K-type PC can be configured with a CPU Unit and one or more of the fol-
lowing Units: Expansion I/O Units, Analog Timer Units, or an I/O Link Unit. All
of these Units are connected in series with the CPU Unit at one end. An I/O
Link Unit, if included, must be on the other end (meaning only one I/O Link
Unit can be used) and an Analog Timer Unit cannot be used. The rest of the
Units can be in any order desired.

There is also a restriction in the number of Units which can be included. To
compute the number of Units for this restriction, add up all of the Units count-
ing the C40K CPU Unit, C60K CPU Unit, C40K Expansion I/O Unit and C60K
Expansion I/O Unit as two Units each and any other Units as one Unit each.
This total must be no more than five.

The following table shows some of the combinations that can be used to
achieve specific numbers of I/O points. The numbers in the table indicate the
number of Units of that size to be used as either the CPU or Expansion I/O
Unit; any one of the Units can be the CPU Unit. This table does not include
the C4P or C16P Expansion I/O Units, the Analog Timer Unit, or the I/O Link
Unit, which can be used for greater system versatility or special applications.
Refer to the remaining tables in this section for other combinations.

I/O points Count as 2
each

Count as 1
each

Total In Out C60j
(32/28)

C40j
(24/16)

C28j
(16/12)

C20j
(12/8)

20 12 8 --- --- --- 1

28 16 12 --- --- 1 ---

40 24 16 --- --- --- 2

--- 1 --- ---

48 28 20 --- --- 1 1

56 32 24 --- --- 2 ---

60 32 28 1 --- --- ---

36 24 --- --- --- 3

--- 1 --- 1

68 40 28 --- --- 1 2

--- 1 1 ---

76 44 32 --- --- 2 1

80 48 32 --- --- --- 4

--- 1 --- 2

--- 2 --- ---

1 --- --- 2

84 48 36 --- --- 3 ---

88 48 40 1 --- 1 ---

52 36 --- --- 1 3

--- 1 1 1

96 56 40 --- --- 2 2

--- 1 2 ---

100 56 44 1 --- --- 2

1 1 --- ---

I/O points Count as 2
each

Count as 1
each

Total In Out C60j
(32/28)

C40j
(24/16)

C28j
(16/12)

C20j
(12/8)

100 60 40 --- --- --- 5

--- 1 --- 3

--- 2 --- 1

104 60 44 --- --- 3 1

108 60 48 1 --- 1 1

64 44 --- --- 1 4

--- 1 1 2

--- 2 1 ---

112 64 48 --- --- 4 ---

116 64 52 1 --- 2 ---

68 48 --- --- 2 3

--- 1 2 1

120 64 56 2 --- --- ---

68 52 1 --- --- 3

1 1 --- 1

124 72 52 --- --- 3 2

--- 1 3 ---

128 72 56 1 --- 1 2

1 1 1 ---

132 76 56 --- --- 4 1

136 76 60 1 --- 2 1

140 76 64 2 --- --- 1

80 60 --- --- 5 ---

144 80 64 1 --- 3 ---

148 80 68 2 --- 1 ---

PC Configuration

Internal Relay (IR) Area Section 3-3

17

The tables on the following pages show the possible configurations for a
K-type PC. Although the tables branch to show the various possibilities at
any one point, there can be no branching in the actual PC connections. You
can choose either branch at any point and go as far as required, i.e., you can
break off at any point to create a smaller PC System.When implementing a
system there is a physical restriction on the total cable length allowable. The
sum of the lengths of all cables in the system must be limited to less than 1.2
meters.

The tables also show which words will be input words and which words will
be output words. All of these are determined by the position of the Unit in the
configuration except for the C4P and C16P Expansion I/O Units, in which
case the model of the Unit determines whether the words are input or output.

The symbols used in the table represent the following:

C20K/C28K

Input Output

C40P/C60P

Input Output Input Output

C20P/C28P/TU/LU,

Input Output

C4K/C16P

In/Output

C40K/C60K

Input Output Input Output

C20K or C28K CPU Unit

C40K or C60K CPU Unit

C4P or C16P Expansion I/O Unit

C20P Expansion I/O Unit, C28K Expansion I/O Unit,
Analog Timer Unit, or I/O Link Unit

C40P or C60P Expansion I/O Unit

Internal Relay (IR) Area Section 3-3

18

C20K/C28K

Input Output

C40P/C60P

Input Output Input Output

C20P/C28P/TU/LU

Input Output

C20P/C28P/TU/LU

Input Output

C20P/C28P/TU/LU

Input Output

C20P/C28P/TU/LU

Input Output

C20P/C28P/TU/LU

Input Output

C20P/C28P/TU/LU

Input Output

C20P/C28P/TU/LU

Input Output

C40P/C60P

Input Output Input Output

C40P/C60P

Input Output Input Output

C20P/C28P/TU/LU

Input Output

C20P/C28P/TU/LU

Input Output

C20P/C28P/TU/LU

Input Output

C20P/C28P/TU/LU

Input Output

C20P/C28P/TU/LU

Input Output

C40P/C60P

Input Output Input Output

C4K/C16P

In/Output

C4K/C16P

In/Output

C4K/C16P

In/Output

C4K/C16P

In/Output

C4K/C16P

In/Output

C4K/C16P

In/Output

C4K/C16P

In/Output

C4K/C16P

In/Output

C4K/C16P

In/Output

C4K/C16P

In/Output

C4K/C16P

In/Output

C4K/C16P

In/Output

C4K/C16P

In/Output

IR 00 IR 01 IR 02 IR 03 IR 04 IR 05 IR 06 IR 07 IR 08 IR 09

Internal Relay (IR) Area Section 3-3

19

C20K/C28K

Input Output

C40P/C60P

Input Output Input Output

C20P/C28P/TU/LU

Input Output

C20P/C28P/TU/LU

Input Output

C20P/C28P/TU/LU

Input Output

C20P/C28P/TU/LU

Input Output

C20P/C28P/TU/LU

Input Output

C40P/C60P

Input Output Input Output

C40P/C60P

Input Output Input Output

C40P/C60P

Input Output Input Output

C20P/C28P/TU/LU

Input Output

C20P/C28P/TU/LU

Input Output

C20P/C28P/TU/LU

Input Output

C20P/C28P/TU/LU

Input Output

C4K/C16P

In/Output

C4K/C16P

In/Output

C4K/C16P

In/Output

C4K/C16P

In/Output

C4K/C16P

In/Output

C4K/C16P

In/Output

C4K/C16P

In/Output

IR 00 IR 01 IR 02 IR 03 IR 04 IR 05 IR 06 IR 07 IR 08 IR 09

Internal Relay (IR) Area Section 3-3

20

C40P/C60P

Input Output Input Output

C20P/C28P/TU/LU

Input Output

C20P/C28P/TU/LU

Input Output

C20P/C28P/TU/LU

Input Output

C20P/C28P/TU/LU

Input Output

C20P/C28P/TU/LU

Input Output

C20P/C28P/TU/LU

Input Output

C40K/C60K

Input Output Input Output

C40K/C60K

Input Output Input Output

C20P/C28P/TU/LU

Input Output

C40P/C60P

Input Output Input Output

C20P/C28P/TU/LU

Input Output

C20P/C28P/TU/LU

Input Output

C40P/C60P

Input Output Input Output

C20P/C28P/TU/LU

Input Output

C4K/C16P

In/Output

C4K/C16P

In/Output

C4K/C16P

In/Output

C4K/C16P

In/Output

C4K/C16P

In/Output

C4K/C16P

In/Output

C4K/C16P

In/Output

C4K/C16P

In/Output

IR 00 IR 01 IR 02 IR 03 IR 04 IR 05 IR 06 IR 07 IR 08 IR 09

Internal Relay (IR) Area Section 3-3

21

3-4 Special Relay (SR) Area
The SR area contains flags and control bits used for monitoring system op-
eration, accessing clock pulses, and signalling errors. SR area word ad-
dresses range from 18 through 19; bit addresses, from 1804 through 1907.

The following table lists the functions of SR area flags and control bits. Most
of these bits are described in more detail following the table.

Unless otherwise stated, flags are OFF until the specified condition arises,
when they are turned ON. Bits 1903 to 1907 are turned OFF when END is
executed at the end of each program cycle, and thus cannot be monitored on
the Programming Console. Other control bits are OFF until set by the user.

Word Bit Function
18 04 RDM(60) Reset Bit

05 RDM(60) Count Input Bit

06 RDM(60) Up/Down Selection Bit

07 HDM(61) Reset Bit

08 Battery Alarm flag

09 Cycle Time Error flag

10 High Speed Counter Reset

11 Step flag

12 Always OFF flag

13 Always ON flag

14 Always OFF flag

15 First Cycle flag

19 00 0.1-second Clock Pulse

01 0.2-second Clock Pulse

02 1-second Clock Pulse

03 Error (ER) flag

04 Carry (CY) flag

05 Greater Than (GR) flag

06 Equals (EQ) flag

07 Less Than (LE) flag

3-4-1 Battery Alarm Flag
SR bit 1808 turns ON if the voltage of the CPU backup battery drops. A volt-
age drop can be indicated by connecting the output of this bit to an external
indicating device such as a LED. This bit can be used in programming to acti-
vate an external warning for a low battery.

3-4-2 Cycle Time Error Flag
SR bit 1809 turns ON if the cycle time exceeds 100 ms. This bit is turned ON
when the cycle time is between 100 and 130 ms. The PC will still operate but
timing may become inaccurate. The PC will stop operating if the execution
time exceeds 130 ms.

3-4-3 High-speed Drum Counter Reset
SR bit 1810 turns ON for one cycle time when the hard reset signal (input
0001) is turned ON.

3-4-4 Clock Pulse Bits
Three clock pulses are available to control program timing. Each clock pulse
bit is ON for the first half of the rated pulse time, then OFF for the second
half. In other words, each clock pulse has a duty factor of 50%.

Special Relay (SR) Area Section 3-4

!

!

22

These clock pulse bits are often used with counter instructions to create tim-
ers. Refer to 5-11 Timer and Counter Instructions for an example of this.

Pulse width 0.1 s 0.2 s 1.0 s

Bit 1900 1901 1902

Bit 1900
0.1-s clock pulse

0.1 s

.05 s .05 s

Bit 1901
0.2-s clock pulse

0.2 s

0.1 s 0.1 s

Bit 1902
1.0-s clock pulse

1.0 s

0.5 s 0.5 s

Caution Because the 0.1-second clock pulse bit has an ON time of 50 ms, the CPU may
not be able to accurately read the pulses if program execution time is too long.

3-4-5 Error Flag (ER)
SR bit 1903 turns ON when the results of an arithmetic operation is not out-
put in BCD or the value of the BIN data processed by the BIN to BCD or BCD
to BIN conversion instruction exceeds 9999. When the ER flag is ON the cur-
rent instruction is not executed.

3-4-6 Step Flag
SR bit 1811 turns ON for one cycle when single-step execution is started with
the STEP instruction.

3-4-7 Always OFF, Always ON Flags
SR bits 1812 and 1814 are always OFF and 1813 is always ON. By connect-
ing these bits to external indicating devices such as a LED they can be used
to monitor the PC’s operating status.

3-4-8 First Cycle Flag
SR bit 1815 turns ON when program execution starts and turns OFF after
one cycle.

3-4-9 Arithmetic Flags
The following flags are used in data shifting, arithmetic calculation, and com-
parison instructions. They are generally referred to only by their two-letter
abbreviations. Refer to 5-12 Data Shifting, 5-14 DATA COMPARE - CMP(20)
and 5-16 BCD Calculations for details.

Caution These flags are all reset when END is executed, and therefore cannot be moni-
tored from a Programming Device.

Special Relay (SR) Area Section 3-4

23

SR bit 1904 turns ON when there is a carry in the result of an arithmetic op-
eration. The content of CY is also used in some arithmetic operations, e.g., it
is added or subtracted along with other operands. This flag can be set and
cleared from the program using the SET CARRY and CLEAR CARRY in-
structions. Use CLC before any instruction using CY unless the current con-
tent of CY is required.

SR bit 1905 turns ON when the result of a comparison shows the second of
two 4-digit operands to be greater than the first.

SR bit 1906 turns ON when the result of a comparison shows two operands
to be equal or when the result of an arithmetic operation is zero.

SR bit 1907 turns ON when the result of a comparison shows the second of
two 4-digit operands to be less than the first.

Remember that the previous four flags, CY, GR, EQ, and LE, are cleared by
the END instruction.

3-5 Data Memory (DM) Area
The DM area is used for internal data storage and manipulation and is acces-
sible only by word. Addresses range from DM 00 through DM 63.

Although composed of 16 bits just like any other word in memory, DM words
cannot be specified by bit for use in instructions with bit-size operands, such
as LD, OUT, AND, and OR.

When the RDM (REVERSIBLE DRUM COUNTER) is used the DM area
words 00 to 31 are used as the area where the upper and lower limits of the
counter are preset and as such these words cannot be used for any other
purposes.

 When the HDM (HIGH-SPEED DRUM COUNTER) is used the DM area
words 32 to 63 are used as the area where the upper and lower limits of the
counter are preset and as such these words cannot be used for any other
purposes.

The DM area retains status during power interruptions.

3-6 Holding Relay (HR) Area
The HR area is used to store and manipulate various kinds of data and can
be accessed either by word or by bit. Word addresses range from HR 0
through HR 9; bit addresses, from HR 000 through HR 915. HR bits can be
used in any order required and can be programmed as often as required.

The HR area retains status when the system operating mode is changed, or
when power is interrupted.

3-7 Timer/Counter (TC) Area
The TC area is used to create and program timers and counters and holds
the completion flags, set values (SV), and present values (PV) for all timers
and counters. All of these are accessed through TC numbers ranging from
TC 00 through TC 47. Each TC number is defined as either a timer or
counter using one of the following instructions: TIM, TIMH, CNT or CNTR. No
prefix is required when using a TC number in a timer or counter instruction.

Carry Flag, CY

Greater Than Flag, GR

Equal Flag, EQ

Less Than Flag, LE

Note

Timer/Counter (TC) Area Section 3-7

24

Once a TC number has been defined using one of these instructions, it can-
not be redefined elsewhere in the program using the same or a different in-
struction. If the same TC number is defined in more than one of these in-
structions or in the same instruction twice, an error will be generated during
the program check. There are no restrictions on the order in which TC num-
bers can be used.

Once defined, a TC number can be designated as an operand in one or more
instructions other than those listed above. When defined as a timer, a TC
number designated as an operand takes a TIM prefix. The TIM prefix is used
regardless of the timer instruction that was used to define the timer. Once
defined as a counter, the TC number designated as an operand takes a CNT
prefix. The CNT is also used regardless of the counter instruction that was
used to define the counter.

TC numbers can be designated for operands that require bit data or for oper-
ands that require word data. When designated as an operand that requires
bit data, the TC number accesses the completion flag of the timer or counter.
When designated as an operand that requires word data, the TC number ac-
cesses a memory location that holds the PV of the timer or counter.

TC numbers are also used to access the SV of timers and counters from a
Programming Device. The procedures for doing so from the Programming
Console are provided in 7-3 Monitoring Operation and Modifying Data.

The TC area retains the SVs of both timers and counters during power inter-
ruptions. The PVs of timers are reset when PC operation is begun and when
reset in interlocked program sections. Refer to 5-7 INTERLOCK AND INTER-
LOCK CLEAR - IL(02) and ILC(03) for details on timer and counter operation
in interlocked program sections. The PVs of counters are not reset at these
times.

Note that in programming “TIM 00” is used to designate three things: the
TIMER instruction defined with TC number 00, the completion flag for this
timer, and the PV of this timer. The meaning in context should be clear, i.e.,
the first is always an instruction, the second is always a bit, and the third is
always a word. The same is true of all other TC numbers prefixed with TIM or
CNT. In explanations of ladder diagrams, the completion flag and PV ac-
cessed through a TC number are generally called the completion flag or the
PV of the instruction (e.g., the completion flag of TIM 00 is the completion
flag accessed through TC number 00, which has been defined using TIM).

When the RDM (REVERSIBLE DRUM COUNTER) is used, TC 46 is used as
the present value storage area of the counter and thus cannot be used for
any other purpose.

When the HDM (HIGH-SPEED DRUM COUNTER) is used, TC 47 is used as
the present value storage area of the counter and thus cannot be used for
any other purpose.

3-8 Temporary Relay (TR) Area
The TR area provides eight bits that are used only with the LD and OUT in-
structions to enable certain types of branching ladder diagram programming.
The use of TR bits is described in Section 4 Writing and Inputting the Pro-
gram.

TR addresses range from TR 0 though TR 7. Each of these bits can be used
as many times as required and in any order required as long as the same TR
bit is not used twice in the same instruction block.

Temporary Relay (TR) Area Section 3-8

25

SECTION 4
Writing and Inputting the Program

4-1 Introduction 26.
4-2 Instruction Terminology 26.
4-3 The Ladder Diagram 27.

4-3-1 Basic Terms 28.
4-3-2 Mnemonic Code 28.
4-3-3 Ladder Instructions 30.
4-3-4 OUT and OUT NOT 32.
4-3-5 The END Instruction 32.
4-3-6 Logic Block Instructions 32.
4-3-7 Coding Multiple Right-hand Instructions 39.
4-3-8 Branching Instruction Lines 39.
4-3-9 Jumps 43.

4-4 The Programming Console 44.
4-4-1 The Keyboard 44.
4-4-2 PC Modes 45.

4-5 Preparation for Operation 46.
4-5-1 Entering the Password 47.
4-5-2 Clearing Memory 47.
4-5-3 Clearing Error Messages 49.

4-6 Inputting, Modifying, and Checking the Program 49.
4-6-1 Setting and Reading from Program Memory Address 50.
4-6-2 Inputting or Overwriting Programs 51.
4-6-3 Checking the Program 53.
4-6-4 Displaying the Cycle Time 54.
4-6-5 Program Searches 55.
4-6-6 Inserting and Deleting Instructions 57.

4-7 Controlling Bit Status 59.
4-7-1 DIFFERENTIATE UP and DIFFERENTIATE DOWN 59.
4-7-2 KEEP 60.
4-7-3 Self-maintaining Bits (Seal) 60.

4-8 Work Bits (Internal Relays) 61.
4-9 Programming Precautions 63.
4-10 Program Execution 65.

26

4-1 Introduction
This section explains how to convert ladder diagrams to mnemonic code and
input them into the PC. It then describes the basic steps and concepts in-
volved in programming and introduces the instructions used to build the basic
structure of the ladder diagram and control its execution. The entire set of
instructions used in programming is described in Section 5 Instruction Set.

There are several basic steps involved in writing a program.

1, 2, 3... 1. Obtain a list of all I/O devices and the I/O points that have been as-
signed to them and prepare a table that shows the I/O bit allocated to
each I/O device.

2. If the PC has any Units, i.e. Analog Timer Units, Host Link Units , and
I/O Link Units that are allocated words in data areas other than the IR
area or are allocated IR words in which the function of each bit is speci-
fied by the Unit, prepare similar tables to show what words are used for
which Units and what function is served by each bit within the words.

3. Determine what words are available for work bits and prepare a table in
which you can allocate these as you use them.

4. Also prepare tables of TC numbers and jump numbers so that you can
allocate these as you use them. Remember, the function of a TC num-
ber can be defined only once within the program; jump numbers 01
through 08 can be used only once each. (TC numbers are described in
5-11 Timer and Counter Instructions; jump numbers are described later
in this section.)

5. Draw the ladder diagram.
6. Input the program into the CPU. When using the Programming Console,

this will involve converting the program to mnemonic form.
7. Check the program for syntax errors and correct these.
8. Execute the program to check for execution errors and correct these.
9. After the entire Control System has been installed and is ready for use,

execute the program and fine tune it if required.

The basics of writing the ladder diagram and inputting it into memory are de-
scribed in the rest of this section. Debugging and monitoring operation of the
program are described in Section 7 Program Debugging and Execution. Sec-
tion 8 Troubleshooting also provides information required for debugging.

This section provides the procedures for inputting and debugging a program
and monitoring and controlling the PC through a Programming Console. The
Programming Console is the most commonly used Programming Device for
the K-type PCs. It is compact and available both in handheld models or
CPU-mounted models. Refer to Appendix A Standard Models for model num-
bers and other details.

If you are using a GPC, FIT, or a computer running LSS, refer to the Opera-
tion Manual for corresponding procedures on these.

4-2 Instruction Terminology
There are basically two types of instructions used in ladder diagram program-
ming: instructions that correspond to conditions on the ladder diagram and
are used in instruction form only when converting a program to mnemonic
code and instructions that are used on the right side of the ladder diagram
and are executed according to the conditions on the instruction lines leading
to them.

Instruction Terminology Section 4-2

27

Most instructions have at least one or more operands associated with them.
Operands indicate or provide the data on which an instruction is to be per-
formed. These are sometimes input as the actual numeric values, but are
usually the addresses of data area words or bits that contain the data to be
used. For instance, a MOVE instruction that has IR 00 designated as the
source operand will move the contents of IR 00 to some other location. The
other location is also designated as an operand. A bit whose address is des-
ignated as an operand is called an operand bit; a word whose address is
designated as an operand is called an operand word.

Other terms used in describing instructions are introduced in Section 5 In-
struction Set.

4-3 The Ladder Diagram
A ladder diagram consists of one line running down the left side with lines
branching off to the right. The line on the left is called the bus bar; the
branching lines, instruction lines or rungs. Along the instruction lines are
placed conditions that lead to other instructions on the right side. The logical
combinations of these conditions determine when and how the instructions at
the right are executed. A simple ladder diagram is shown below.

0000 0315

Instruction

Instruction

0403

0001

HR 109 12031208 1200

0501 0502 0503 0504

1201

0100 0002

0010

0011

0003 HR 510 0007 TC 01 0515

1001 1002

0405

1005 1007

As shown in the diagram above, instruction lines can branch apart and they
can join back together. The vertical pairs of lines are called conditions. Con-
ditions without diagonal lines through them are called normally open condi-
tions and correspond to a LOAD, AND, or OR instruction. The conditions with
diagonal lines through them are called normally closed conditions and corre-
spond to a LOAD NOT, AND NOT, or OR NOT instruction. The number
above each condition indicates the operand bit for the instruction. It is the
status of the bit associated with each condition that determine the execution
condition for following instructions. The function of each of the instructions
that correspond to a condition is described below. Before we consider these,
however, there are some basic terms that must be explained.

Note When displaying ladder diagrams with a GPC, a FIT, or LSS, a second bus
bar will be shown on the right side of the ladder diagram and will be con-
nected to all instructions on the right side. This does not change the ladder
diagram program in any functional sense. No conditions can be placed be-
tween the instructions on the right side and the right bus bar, i.e., all instruc-
tions on the right must be connected directly to the right bus bar. Refer to the
GPC, FIT, or LSS Operation Manual for details.

The Ladder Diagram Section 4-3

28

4-3-1 Basic Terms

Each condition in a ladder diagram is either ON or OFF depending on the
status of the operand bit that has been assigned to it. A normally open condi-
tion is ON if the operand bit is ON; OFF if the operand bit is OFF. An normally
closed condition is ON if the operand bit is OFF; OFF if the operand bit is
ON. Generally speaking, you use a normally open condition when you want
something to happen when a bit is ON and an normally closed condition
when you want something to happen when a bit is OFF.

Instruction

Instruction

0000

0000
Instruction is executed
when IR 0000 is ON.

Instruction is executed
when IR 0000 is OFF.

Normally open condition

Normally closed condition

In ladder diagram programming, the logical combination of ON and OFF con-
ditions before an instruction determines the compound condition under which
the instruction is executed. This condition, which is either ON or OFF, is
called the execution condition for the instruction. All instructions except for
LOAD instructions have execution conditions.

The operands designated for any of the ladder instructions can be any bit in
the IR, SR, HR or TC area. This means that the conditions in a ladder dia-
gram can be determined by I/O bits, flags, work bits, timers/counters, etc.
LOAD and OUTPUT instructions can also use TR area bits, but they do so
only in special applications.

What conditions correspond to what instructions is determined by the rela-
tionship between the conditions established by the instruction lines that con-
nect them. Any group of conditions that go together to create a logic result is
called a logic block. Although ladder diagrams can be written without actually
analyzing individual logic blocks, understanding logic blocks is necessary for
efficient programming and is essential when programs are to be input in mne-
monic code.

4-3-2 Mnemonic Code
The ladder diagram cannot be directly input into the PC via a Programming
Console; a GPC, a FIT, or LSS is required. To input from a Programming
Console, it is necessary to convert the ladder diagram to mnemonic code.
The mnemonic code provides exactly the same information as the ladder dia-
gram, but in a form that can be typed directly into the PC. Actually you can
program directly in mnemonic code, although it in not recommended for be-
ginners or for complex programs. Also, regardless of the Programming De-
vice used, the program is stored in memory in mnemonic form, making it im-
portant to understand mnemonic code.

Because of the importance of the Programming Console as a peripheral de-
vice and because of the importance of mnemonic code in complete under-
standing of a program, we will introduce and describe the mnemonic code
along with the ladder diagram. Remember, you will not need to use the mne-
monic code if you are inputting via a GPC, a FIT, or LSS (although you can
use it with these devices too, if you prefer).

Normally Open and
Normally Closed
Conditions

Execution Conditions

Operand Bits

Logic Blocks

The Ladder Diagram Section 4-3

29

The program is input into addresses in Program Memory. Addresses in Pro-
gram Memory are slightly different to those in other memory areas because
each address does not necessarily hold the same amount of data. Rather,
each address holds one instruction and all of the definers and operands (de-
scribed in more detail later) required for that instruction. Because some in-
structions require no operands, while others require up to three operands,
Program Memory addresses can be from one to four words long.

Program Memory addresses start at 0000 and run until the capacity of Pro-
gram Memory has been exhausted. The first word at each address defines
the instruction. Any definers used by the instruction are also contained in the
first word. Also, if an instruction requires only a single bit operand (with no
definer), the bit operand is also programmed on the same line as the instruc-
tion. The rest of the words required by an instruction contain the operands
that specify what data is to be used. When converting to mnemonic code, all
but ladder diagram instructions are written in the same form, one word to a
line, just as they appear in the ladder diagram symbols. An example of mne-
monic code is shown below. The instructions used in it are described later in
the manual.

Address Instruction Operands

0000 LD HR 001

0001 AND 0001

0002 OR 0002

0003 LD NOT 0200

0004 AND 0201

0005 AND LD 0102

0006 MOV(21)

00

DM 00

0007 CMP(20)

DM 00

HR 0

0008 LD 0205

0009 OUT 0101

0010 MOV(21)

DM 00

DM 05

0011 DIFU(13) 0002

0012 AND 0005

0013 OUT 0103

The address and instruction columns of the mnemonic code table are filled in
for the instruction word only. For all other lines, the left two columns are left
blank. If the instruction requires no definer or bit operand, the operand col-
umn is left blank for first line. It is a good idea to cross through any blank
data column spaces (for all instruction words that do not require data) so that
the data column can be quickly cycled to see if any addresses have been left
out.

When programming, addresses are automatically displayed and do not have
to be input unless for some reason a different location is desired for the in-
struction. When converting to mnemonic code, it is best to start at Program
Memory address 0000 unless there is a specific reason for starting else-
where.

Program Memory Structure

The Ladder Diagram Section 4-3

30

4-3-3 Ladder Instructions

The ladder instructions are those that correspond to the conditions on the
ladder diagram. Ladder instructions, either independently or in combination
with the logic block instructions described next, form the execution conditions
upon which all other instructions are executed.

The first condition that starts any logic block within a ladder diagram corre-
sponds to a LOAD or LOAD NOT instruction.

0000

0000

A LOAD instruction.

A LOAD NOT instruction.

Address Instruction Operands

0000 LD 0000

0001 Instruction

0002 LD NOT 0000

0003 Instruction

When this is the only condition on the instruction line, the execution condition
for the instruction at the right is ON when the condition is ON. For the LOAD
instruction (i.e., a normally open condition), the execution condition would be
ON when IR 0000 was ON; for the LOAD NOT instruction (i.e., an normally
closed condition), it would be ON when IR 0000 was OFF.

When two or more conditions lie in series on the same instruction line, the
first one corresponds to a LOAD or LOAD NOT instruction; the rest of the
conditions, to AND or AND NOT instructions. The following example shows
three conditions which correspond in order from the left to a LOAD, an AND
NOT, and an AND instruction.

0000 0100 HR 000
Instruction

Address Instruction Operands

0000 LD 0000

0001 AND NOT 0100

0002 AND HR 000

0003 Instruction

The instruction at the right would have an ON execution condition only when
all three conditions are ON, i.e., when IR 0000 was ON, IR 0100 was OFF,
and HR 000 was ON.

Actually, AND instructions can be considered individually in series, each of
which would take the logical AND between the execution condition (i.e., the
sum of all conditions up to that point) and the status of the AND instruction’s
operand bit. If both of these were ON, an ON execution condition would be
produced for the next instruction. The execution condition for the first AND
instruction in a series would be the first condition on the instruction line.

Each AND NOT instruction in a series would take the logical AND between
its execution condition and the inverse of its operand bit.

LOAD and LOAD NOT

AND and AND NOT

The Ladder Diagram Section 4-3

31

When two or more conditions lie on separate instruction lines running in par-
allel and then joining together, the first condition corresponds to a LOAD or
LOAD NOT instruction; the rest of the conditions correspond to OR or OR
NOT instructions. The following example shows three conditions which corre-
spond in order from the top to a LOAD NOT, an OR NOT, and an OR instruc-
tion.

Instruction

0100

HR 000

0000 Address Instruction Operands

0000 LD 0000

0001 OR NOT 0100

0002 OR HR 000

0003 Instruction

The instruction at the right would have an ON execution condition when any
one of the three conditions was ON, i.e., when IR 0000 was OFF, when IR
0100 was OFF, or when HR 000 was ON.

OR and OR NOT instructions can also be considered individually, each tak-
ing the logical OR between its execution condition and the status of the OR
instruction’s operand bit. If either one of these were ON, an ON execution
condition would be produced for the next instruction.

When AND and OR instructions are combined in more complicated dia-
grams, they can sometimes be considered individually, with each instruction
performing a logic operation on the execution condition and the status of the
operand bit. The following is one example.

Instruction
0002 00030000 0001

0200

Address Instruction Operands

0000 LD 0000

0001 AND 0001

0002 OR 0200

0003 AND 0002

0004 AND NOT 0003

0005 Instruction

Here, an AND is taken between the status of 0000 and that of 0001 to deter-
mine the execution condition for an OR with the status of 0200. The result of
this operation determines the execution condition for an AND with the status
of 0002, which in turn determines the execution condition for an AND with the
inverse of the status of 0003. In more complicated diagrams, however, it is
necessary to consider logic blocks before an execution condition can be de-
termined for the final instruction, and that’s where AND LOAD and OR LOAD
instructions are used.

OR and OR NOT

Combining AND and OR
Instructions

The Ladder Diagram Section 4-3

32

4-3-4 OUT and OUT NOT
The OUT and OUT NOT instructions are used to control the status of the
designated operand bit according to the execution condition. With the OUT
instruction, the operand bit will be turned ON as long as the execution condi-
tion is ON and will be turned OFF as long as the execution condition is OFF.
With the OUT NOT instruction, the operand bit will be turned ON as long as
the execution condition is OFF and turned OFF as long as the execution con-
dition is ON. These appear as follows:

0000

0101

0100

0001

Address Instruction Operands

0000 LD 0000

0001 OUT 0100

Address Instruction Operands

0000 LD 0001

0001 OUT NOT 0101

In the above examples, bit 0100 will be ON as long as 0000 is ON and bit
0101 will be OFF as long as 0001 is ON. Here, 0000 and 0001 would be in-
put bits and 0100 and 0101 output bits assigned to the Units controlled by
the PC, i.e., the signals coming in through the input points assigned 0000
and 0001 are controlling the output points assigned 0100 and 0101, respec-
tively.

The length of time that a bit is ON or OFF can be controlled by combining the
OUT or OUT NOT instruction with timer instructions. Refer to Examples un-
der 5-11-1 TIMER - TIM for details.

4-3-5 The END Instruction
The last instruction in any program must be the END instruction. When the
CPU cycles the program, it executes all instructions up to the first END in-
struction before returning to the beginning of the program and beginning exe-
cution again. Although an END instruction can be placed at any point in a
program, which is sometimes done when debugging, no instructions past the
first END instruction will be executed until it is removed.

Instruction
0000 0001

END(01)
Program execution
ends here.

Address Instruction Operands

0500 LD 0000

0501 AND NOT 0001

0502 Instruction

0503 END(01) ---

If there is no END instruction anywhere in the program, the program will not
be executed at all.

4-3-6 Logic Block Instructions
Logic block instructions do not correspond to specific conditions on the lad-
der diagram; rather, they describe relationships between logic blocks. The
AND LOAD instruction logically ANDs the execution conditions produced by
two logic blocks. The OR LOAD instruction logically ORs the execution condi-
tions produced by two logic blocks.

The Ladder Diagram Section 4-3

33

Although simple in appearance, the diagram below requires an AND LOAD
instruction.

Instruction
0002

0003

0000

0001

Address Instruction Operands

0000 LD 0000

0001 OR 0001

0002 LD 0002

0003 OR NOT 0003

0004 AND LD ---

The two logic blocks are indicated by dotted lines. Studying this example
shows that an ON execution condition would be produced when both 1)
either of the conditions in the left logic block was ON (i.e., when either 0000
or 0001 was ON) and 2) either of the conditions in the right logic block was
ON (i.e., when either 0002 was ON or 0003 was OFF).

Analyzing the diagram in terms of instructions, the condition at 0000 would
be a LOAD instruction and the condition below it would be an OR instruction
between the status of 0000 and that of 0001. The condition at 0002 would be
another LOAD instruction and the condition below this would be an OR NOT
instruction, i.e., an OR between the status or 0002 and the inverse of the
status of 0003. To arrive at the execution condition for the instruction at the
right, the logical AND of the execution conditions resulting from these two
blocks would have to be taken. AND LOAD allows us to do this. AND LOAD
always takes an AND between the current execution condition and the last
unused execution condition. An unused execution condition is produced by
using the LOAD or LOAD NOT instruction for any but the first condition on an
instruction line.

Although we’ll not describe it in detail, the following diagram would require an
OR LOAD instruction between the top logic block and the bottom logic block.
An ON execution condition would be produced for the instruction at the right
either when 0000 was ON and 0001 was OFF or when 0002 and 0003 were
both ON.

Instruction
0000 0001

0002 0003

Address Instruction Operands

0000 LD 0000

0001 AND NOT 0001

0002 LD 0002

0003 AND 0003

0004 OR LD ---

Naturally, some diagrams will require both AND LOAD and OR LOAD instruc-
tions.

To code diagrams with logic block instructions in series, the diagram must be
divided into logic blocks. Each block is coded using a LOAD instruction to
code the first condition, and then AND LOAD or OR LOAD is used to logically
combine the blocks. With both AND LOAD and OR LOAD there are two ways
to achieve this. One is to code the logic block instruction after the first two
blocks and then after each additional block. The other is to code all of the
blocks to be combined, starting each block with LOAD or LOAD NOT, and
then to code the logic block instructions which combine them. In this case,
the instructions for the last pair of blocks should be combined first, and then
each preceding block should be combined, working progressively back to the
first block. Although either of these methods will produce exactly the same
result, the second method, that of coding all logic block instructions together,
can be used only if eight or fewer blocks are being combined, i.e., if seven or
fewer logic block instructions are required.

AND LOAD

OR LOAD

Logic Block Instructions in
Series

The Ladder Diagram Section 4-3

34

The following diagram requires AND LOAD to be converted to mnemonic
code because three pairs of parallel conditions lie in series. The two means
of coding the programs are also shown.

0000 0002 0004

0001 0003 0005

0100

Address Instruction Operands Address Instruction Operands

0000 LD 0000

0001 OR NOT 0001

0002 LD NOT 0002

0003 OR 0003

0004 AND LD ---

0005 LD 0004

0006 OR 0005

0007 AND LD ---

0008 OUT 0100

0000 LD 0000

0001 OR NOT 0001

0002 LD NOT 0002

0003 OR 0003

0004 LD 0004

0005 OR 0005

0006 AND LD ---

0007 AND LD ---

0008 OUT 0100

Again, with the method on the right, a maximum of eight blocks can be com-
bined. There is no limit to the number of blocks that can be combined with
the first method.

The following diagram requires OR LOAD instructions to be converted to
mnemonic code because three pairs of conditions in series lie in parallel to
each other.

0000 0001

0002 0003

0040 0005

0101

The first of each pair of conditions is converted to LOAD with the assigned bit
operand and then ANDed with the other condition. The first two blocks can
be coded first, followed by OR LOAD, the last block, and another OR LOAD,
or the three blocks can be coded first followed by two OR LOADs. The mne-
monic code for both methods is shown below.

0000 LD 0000

0001 AND NOT 0001

0002 LD NOT 0002

0003 AND NOT 0003

0004 OR LD ---

0005 LD 0004

0006 AND 0005

0007 OR LD ---

0008 OUT 0101

0000 LD 0000

0001 AND NOT 0001

0002 LD NOT 0002

0003 AND NOT 0003

0004 LD 0004

0005 AND 0005

0006 OR LD ---

0007 OR LD ---

0008 OUT 0101

Address Instruction Operands Address Instruction Operands

Again, with the method on the right, a maximum of eight blocks can be com-
bined. There is no limit to the number of blocks that can be combined with
the first method.

The Ladder Diagram Section 4-3

35

Both of the coding methods described above can also be used when using
both AND LD and OR LD, as long as the number of blocks being combined
does not exceed eight.

The following diagram contains only two logic blocks as shown. It is not nec-
essary to break block b down further, because it can coded directly using
only AND and OR.

0000 0001 0002 0003

0201

0101

0004

Block
a

Block
b

Address Instruction Operands

0000 LD 0000

0001 AND NOT 0001

0002 LD 0002

0003 AND 0003

0004 OR 0201

0005 OR 0004

0006 AND LD ---

0007 OUT 0101

Although the following diagram is similar to the one above, block b in the dia-
gram below cannot be coded without being broken down into two blocks
combined with OR LD. In this example, the three blocks have been coded
first and then OR LD has been used to combine the last two blocks followed
by AND LD to combine the execution condition produced by the OR LD with
the execution condition of block a.

When coding the logic block instructions together at the end of the logic
blocks they are combining, they must, as shown below, be coded in reverse
order, i.e., the logic block instruction for the last two blocks is coded first, fol-
lowed by the one to combine the execution condition resulting from the first
logic block instruction and the execution condition of the logic block third from
the end, and on back to the first logic block that is being combined.

0000 0001 0002 0003
0102

0004 0202

Block
a

Block
b

Block
b2

Block
b1 Address Instruction Operands

0000 LD NOT 0000

0001 AND 0001

0002 LD 0002

0003 AND NOT 0003

0004 LD NOT 0004

0005 AND 0202

0006 OR LD ---

0007 AND LD ---

0008 OUT 0102

When determining what logic block instructions will be required to code a dia-
gram, it is sometimes necessary to break the diagram into large blocks and
then continue breaking the large blocks down until logic blocks that can be
coded without logic block instructions have been formed. These blocks are
then coded, combining the small blocks first, and then combining the larger
blocks. AND LD and OR LD is used to combine either, i.e., AND LD or OR
LD always combines the last two execution conditions that existed, regard-
less of whether the execution conditions resulted from a single condition,
from logic blocks, or from previous logic block instructions.

When working with complicated diagrams, blocks will ultimately be coded
starting at the top left and moving down before moving across. This will gen-
erally mean that, when there might be a choice, OR LD will be coded before
AND LD.

Combining AND LD and
OR LD

Complicated Diagrams

The Ladder Diagram Section 4-3

36

The following diagram must be broken down into two blocks and each of
these then broken into two blocks before it can be coded. As shown below,
blocks a and b require an AND LD. Before AND LD can be used, however,
OR LD must be used to combine the top and bottom blocks on both sides,
i.e., to combine a1 and a2; b1 and b2.

0000 0001 0004 0005
0103

Block
a

Block
b

0006 0007

Block
b2

Block
b1

0002 0003

Block
a2

Block
a1

Blocks a1 and a2

Blocks b1 and b2

Blocks a and b

Address Instruction Operands

0000 LD 0000

0001 AND NOT 0001

0002 LD NOT 0002

0003 AND 0003

0004 OR LD ---

0005 LD 0004

0006 AND 0005

0007 LD 0006

0008 AND 0007

0009 OR LD ---

0010 AND LD ---

0011 OUT 0103

This type of diagram can be coded easily if each block is worked with in or-
der first top to bottom and then left to right. In the following diagram, blocks a
and b would be combined with AND LD as shown above, and then block c
would be coded and a second AND LD would be used to combine it with the
execution condition from the first AND LD, and so on through to block n.

Block
a

Block
b

00

Block
n

Block
c

The Ladder Diagram Section 4-3

37

The following diagram requires first an OR LD and an AND LD to code the
top of the three blocks, and then two more OR LDs to complete the mne-
monic code.

0002 0003

0105

0000 0001

0004 0005

0006 0007

Address Instruction Operands

0000 LD 0000

0001 LD 0001

0002 LD 0002

0003 AND NOT 0003

0004 OR LD ---

0005 AND LD ---

0006 LD NOT 0004

0007 AND 0005

0008 OR LD ---

0009 LD NOT 0006

0010 AND 0007

0011 OR LD ---

0012 OUT 0105

Although the program will execute as written, this diagram could be redrawn
as shown below to eliminate the need for the first OR LD and the AND LD,
simplifying the program and saving memory space.

0002 0003
0105

0001

0000

0004 0005

0006 0007

Address Instruction Operands

0000 LD 0002

0001 AND NOT 0003

0002 OR 0001

0003 AND 0000

0004 LD NOT 0004

0005 AND 0005

0006 OR LD ---

0007 LD NOT 0006

0008 AND 0007

0009 OR LD ---

0010 OUT 0105

The following diagram requires five blocks, which here are coded in order
before using OR LD and AND LD to combine them starting from the last two
blocks and working forward. The OR LD at address 0008 combines blocks d
and e, the following AND LD combines the resulting execution condition with
that of block c, etc.

0105

0000

0003 0004

0006 0007

0001 0002

0005

Block e

Block dBlock c

Block b

Block a

Address Instruction Operands

0000 LD 0000

0001 LD 0001

0002 AND 0002

0003 LD 0003

0004 AND 0004

0005 LD 0005

0006 LD 0006

0007 AND 0007

0008 OR LD ---

0009 AND LD ---

0010 OR LD ---

0011 AND LD ---

0012 OUT 0105

Blocks d and e

Block c with result of above

Block b with result of above

Block a with result of above

The Ladder Diagram Section 4-3

38

Again, this diagram can be redrawn as follows to simplify program structure
and coding and to save memory space.

0006 0007
0105

0005

0001 0002

0003 0004 0000 Address Instruction Operands

0000 LD 0006

0001 AND 0007

0002 OR 0005

0003 AND 0003

0004 AND 0004

0005 LD 0001

0006 AND 0002

0007 OR LD ---

0008 AND 0000

0009 OUT 0105

Our last example may at first appear very complicated but can be coded us-
ing only two logic block instructions. The diagram appears as follows:

0000 0001

0105

0002 0003

0100 0101

0004 0005

0500

0006

Block cBlock b

Block a

The first logic block instruction is used to combine the execution conditions
resulting from blocks a and b, and the second one is used to combine the
execution condition of block c with the execution condition resulting from the
normally closed condition assigned 0003. The rest of the diagram can be
coded with ladder instructions. The logical flow for this and the resulting code
are shown below.

0000 0001

0105

0002 0003

0100 0101

0004 00050500

0006

Block c

Block bBlock a

OR LD

LD 0000
AND 0001

OR 0500

AND 0002
AND NOT 0003

LD 0100
AND 0101

OR 0006

LD 0004
AND 0005

AND LD

Address Instruction Operands

0000 LD 0000

0001 AND 0001

0002 LD 0100

0003 AND 0101

0004 OR LD ---

0005 OR 0500

0006 AND 0002

0007 AND NOT 0003

0008 LD 0004

0009 AND 0005

0010 OR 0006

0011 AND LD ---

0012 OUT 0105

The Ladder Diagram Section 4-3

39

4-3-7 Coding Multiple Right-hand Instructions
If there is more than one right-hand instruction executed with the same exe-
cution condition, they are coded consecutively following the last condition on
the instruction line. In the following example, the last instruction line contains
one more condition that corresponds to an AND.

0000 0003

0001

HR 002

0002

HR 000

HR
001

0106

0107

Address Instruction Operands

0000 LD 0000

0001 OR 0001

0002 OR 0002

0003 OR HR 000

0004 AND 0003

0005 OUT HR 001

0006 OUT 0107

0007 AND HR 002

0008 OUT 0106

4-3-8 Branching Instruction Lines
When an instruction line branches into two or more lines, it is sometimes
necessary to use either interlocks or TR bits to maintain the execution condi-
tion that existed at a branching point. This is because instruction lines are
executed across to a terminal instruction on the right before returning to
branching points to execute instructions on the branch lines. If the execution
condition has changed during this time, the previous execution condition is
lost and proper execution will not be possible without some means of pre-
serving the previous condition. The following diagrams illustrate this. In both
diagrams, instruction 1 is executed before returning to the branching point
and moving on to the branch line leading to instruction 2.

Instruction 1

0002

0000

Instruction 2

Branching
point

Instruction 1

0002

0000

Instruction 2

Branching
point

Diagram B: Needs Correction

Diagram A: OK

0001

Address Instruction Operands

0000 LD 0000

0001 Instruction 1

0002 AND 0002

0003 Instruction 2

Address Instruction Operands

0000 LD 0000

0001 AND 0001

0002 Instruction 1

0003 AND 0002

0004 Instruction 2

If, as shown in diagram A, the execution condition that existed at the branch-
ing point is not changed before returning to the branch line (instructions at
the far right do not change the execution condition), then the branch line will
be executed correctly and no special programming measure is required.

If, as shown in diagram B, a condition exists between the branching point
and the last instruction on the top instruction line, the execution condition at
the branching point and the execution condition at the end of the top line will
sometimes be different, making it impossible to ensure correct execution of
the branch line. The system remembers only the current execution condition
(i.e., the logical sum for an entire line) and does not remember partial logical
sums at points within a line.

The Ladder Diagram Section 4-3

40

There are two means of programming branching programs to preserve the
execution conditions. One is to use TR bits; the other, to use interlocks
(IL(02)/ILC(03)).

The TR area provides eight bits, TR 0 through TR 7, that can be used to tem-
porarily preserve execution conditions. If a TR bit is used as the operand of
the OUTPUT instruction placed at a branching point, the current execution
condition will be stored at the designated TR bit. Storing execution conditions
is a special application of the OUTPUT instruction. When returning to the
branching point, the same TR bit is then used as the operand of the LOAD
instruction to restore the execution condition that existed when the branching
point was first reached in program execution.

The above diagram B can be written as shown below to ensure correct exe-
cution.

Instruction 1

0002

0000

Instruction 2

Diagram B: Corrected Using a TR bit

0001
TR 0 Address Instruction Operands

0000 LD 0000

0001 OUT TR 0

0002 AND 0001

0003 Instruction 1

0004 LD TR 0

0005 AND 0002

0006 Instruction 2

In terms of actual instructions the above diagram would be as follows: The
status of 0000 is loaded (a LOAD instruction) to establish the initial execution
condition. This execution condition is then output using an OUTPUT instruc-
tion to TR 0 to store the execution condition at the branching point. The exe-
cution condition is then ANDed with the status of 0001 and instruction 1 is
executed accordingly. The execution condition that was stored at the branch-
ing point is then loaded back in (a LOAD instruction with TR 0 as the oper-
and) and instruction 2 is executed accordingly.

The following example shows an application using two TR bits.

Instruction 1

0003

0000 0002
TR 1

0005

TR 0
0001

0004

Instruction 2

Instruction 3

Instruction 4

Address Instruction Operands

0000 LD 0000

0001 OUT TR 0

0002 AND 0001

0003 OUT TR 1

0004 AND 0002

0005 OUT 0500

0006 LD TR 1

0007 AND 0003

0008 OUT 0501

0009 LD TR 0

0010 AND 0004

0011 OUT 0502

0012 LD TR 0

0013 AND NOT 0005

0014 OUT 0503

In this example, TR 0 and TR 1 are used to store the execution conditions at
the branching points. After executing instruction 1, the execution condition
stored in TR 1 is loaded for an AND with the status 0003. The execution con-
dition stored in TR 0 is loaded twice, the first time for an AND with the status
of 0004 and the second time for an AND with the inverse of the status of
0005.

TR Bits

The Ladder Diagram Section 4-3

41

TR bits can be used as many times as required as long as the same TR bit is
not used more than once in the same instruction block. Here, a new instruc-
tion block is begun each time execution returns to the bus bar. If more than
eight branching points requiring that the execution condition be saved are
necessary in a single instruction block, interlocks, which are described next,
must be used.

When drawing a ladder diagram, be careful not to use TR bits unless neces-
sary. Often the number of instructions required for a program can be reduced
and ease of understanding a program increased by redrawing a diagram that
would otherwise required TR bits. With both of the following pairs of dia-
grams, the versions on the top require fewer instructions and do not require
TR bits. The first example achieves this by merely reorganizing the parts of
the instruction block; the second, by separating the second OUTPUT instruc-
tion and using another LOAD instruction to create the proper execution con-
dition for it.

Instruction 1
0000

Instruction 2

0001
TR 0

Instruction 2

0000

Instruction 1
0001

Instruction 1

0000

Instruction 2

0003

TR 0
0001

0004

0002

0001 0003

0000

0004

0002

0001

Instruction 1

Instruction 2

Note TR bits are only used when programming using mnemonic code and are not
necessary when inputting ladder diagrams directly, as is possible from a
GPC. The above limitations on the number of branching points requiring TR
bits and considerations on methods to reduce the number of programming
instructions still hold.

The Ladder Diagram Section 4-3

42

The problem of storing execution conditions at branching points can also be
handled by using the INTERLOCK (IL(02)) and INTERLOCK CLEAR
(ILC(03)) instructions. The branching point and all the conditions leading to it
are placed on a separate line followed by all of the lines from the branching
point. Each branch line is thus established as an new instruction line, with the
first condition on each branch line corresponding to a LOAD or LOAD NOT
instruction. If the execution condition for the INTERLOCK instruction is OFF,
all instructions on the right side of the branch lines leading from the branch-
ing point receive an OFF execution condition through the first INTERLOCK
CLEAR instruction. The effect that this has on particular instructions is de-
scribed in 5-7 INTERLOCK and INTERLOCK CLEAR - IL(02) and ILC(03).

Diagram B from the initial example can also be corrected with an interlock.
As shown below, this requires two more instruction lines for the interlock in-
structions.

Instruction 1

0002

0000

Instruction 2

Diagram B: Corrected with an Interlock

0001

ILC(03)

IL(02) Address Instruction Operands

0000 LD 0000

0001 IL(02) ---

0002 LD 0001

0003 Instruction 1

0004 LD 0002

0005 Instruction 2

0006 ILC(03) ---

If 0000 is ON in the revised version of diagram B, above, the status of 0001
and that of 0002 would determine the execution conditions for instructions 1
and 2, respectively, on independent instruction lines. Because here 0000 is
ON, this would produce the same results as ANDing the status of each of
these bits, as would occur if the interlock was not used, i.e., the INTERLOCK
and INTERLOCK CLEAR instructions would not affect execution. If 0000 is
OFF, the INTERLOCK instruction would produce an OFF execution condition
for instructions 1 and 2 and then execution would continue with the instruc-
tion line following the INTERLOCK CLEAR instruction.

As shown in the following diagram, more than one INTERLOCK instruction
can be used within one instruction block; each is effective through the next
INTERLOCK CLEAR instruction.

Instruction 1

0000

Instruction 2

0001

ILC(03)

IL(02)

0004

Instruction 3

Instruction 4
0006

0005

0003

0002

IL(02)

Address Instruction Operands

0000 LD 0000

0001 IL(02) ---

0002 LD 0001

0003 Instruction 1

0004 LD 0002

0005 IL(02) ---

0006 LD 0003

0007 AND NOT 0004

0008 Instruction 2

0009 LD 0005

0010 Instruction 3

0011 LD 0006

0012 Instruction 4

0013 ILC(03) ---

Interlocks

The Ladder Diagram Section 4-3

43

If 0000 in the above diagram was OFF (i.e., if the execution condition for the
first INTERLOCK instruction was OFF), instructions 1 through 4 would be
executed with OFF execution conditions and execution would move to the
instruction following the INTERLOCK CLEAR instruction. If 0000 was ON, the
status of 0001 would be loaded to form the execution condition for instruction
1 and then the status of 0002 would be loaded to form the first execution
status for that instruction line, i.e., the execution condition for the second IN-
TERLOCK instruction. If 0002 was OFF, instructions 2 through 4 would be
executed with OFF execution conditions. If 0002 was ON, 0003, 0005, and
0006 would be executed as written.

4-3-9 Jumps
A specific section of a program can be skipped according to a designated
execution condition. Although this is similar to what happens when the exe-
cution condition for an INTERLOCK instruction is OFF, with jumps, the oper-
ands for all instructions maintain status. Jumps can therefore be used to con-
trol devices that require a sustained output, e.g., pneumatics and hydraulics,
whereas interlocks can be used to control devices that do not required a sus-
tained output, e.g., electronic instruments.

Jumps are created using the JUMP (JMP(04)) and JUMP END (JME(05))
instructions. If the execution condition for a JUMP instruction is ON, the pro-
gram is executed normally as if the jump did not exist. If the execution condi-
tion for the JUMP instruction is OFF, program execution moves immediately
to a JUMP END instruction without changing the status of anything between
the JUMP and JUMP END instruction. Actually there are two types of jumps.

All JUMP and JUMP END instructions are assigned jump numbers ranging
between 00 and 08. The jump number used determines the type of jump.

A jump can be defined using jump numbers 01 through 08 only once, i.e.,
each of these numbers can be used once in a JUMP instruction and once in
a JUMP END instruction. When a JUMP instruction assigned one of these
numbers is executed, execution moves immediately to the JUMP END in-
struction that has the same number as if all of the instruction between them
did not exist. Diagram B from the TR bit and interlock example could be
redrawn as shown below using a jump. Although 01 has been used as the
jump number, any number between 01 and 08 could be used as long as it
has not already been used in a different part of the program.

Instruction 1

0002

0000

Instruction 2

Diagram B: Corrected with a Jump

0001

JME(05) 01

JMP(04) 01 Address Instruction Operands

0000 LD 0000

0001 JMP(04) 01

0002 LD 0001

0003 Instruction 1

0004 LD 0002

0005 Instruction 2

0006 JME(05) 01

This version of diagram B would have a shorter execution time when 0000
was OFF than any of the other versions.

The other type of jump is created with a jump number of 00. As many jumps
as desired can be created using jump number 00 and JUMP instructions us-
ing 00 can be used consecutively without a JUMP END using 00 between
them. In the extreme, only one JUMP END 00 instruction is required for all
JUMP 00 instructions. When 00 is used as the jump number for a JUMP in-
struction, program execution moves to the instruction following the next

The Ladder Diagram Section 4-3

44

JUMP END instruction with a jump number of 00. Although, as in all jumps,
no status is changed and no instructions are executed between the JUMP 00
and JUMP END 00 instructions, the program must search for the next JUMP
END 00 instruction, producing a slightly longer execution time.

Execution of programs containing multiple JUMP 00 instructions for one
JUMP END 00 instruction resembles that of similar interlocked sections. The
following diagram is the same as that used for the interlock example above,
except redrawn with jumps. This diagram, however, would not execute the
same, as has already be described, i.e., interlocks would reset certain parts
of the interlocked section but jumps would not affect any status between the
JUMP and JUMP END instructions.

Instruction 1

0000

Instruction 2

0001

JME(05) 00

JMP(04) 00

0004

Instruction 3

Instruction 4
0006

0005

0003

0002

JMP(04) 00

Address Instruction Operands

0000 LD 0000

0001 JMP(04) 00

0002 LD 0001

0003 Instruction 1

0004 LD 0002

0005 JMP(04) 00

0006 LD 0003

0007 AND NOT 0004

0008 Instruction 2

0009 LD 0005

0010 Instruction 3

0011 LD 0006

0012 Instruction 4

0013 JME(05) 00

Jump diagrams can also be drawn as branching instruction lines if desired
and would look exactly like their interlock equivalents. The non-branching
form, which is the form displayed on the GPC, will be used in this manual.

4-4 The Programming Console
Depending on the model of Programming Console used, it is either con-
nected to the CPU via a Programming Console Adapter and Connecting Ca-
ble or it is mounted directly to the CPU.

4-4-1 The Keyboard
The keyboard of the Programming Console is functionally divided by key
color into the following four areas:

The ten white keys are used to input numeric program data such as program
addresses, data area addresses, and operand values. The numeric keys are
also used in combination with the function key (FUN) to enter instructions
with function codes.

The CLR key clears the display and cancels current Programming Console
operations. It is also used when you key in the password at the beginning of
programming operations. Any Programming Console operation can be can-
celled by pressing the CLR key, although the CLR key may have to be
pressed two or three times to cancel the operation and clear the display.

The yellow keys are used for writing and correcting programs. Detailed ex-
planations of their functions are given later in this section.

White Numeric Keys

Red CLR Key

Yellow Operation Keys

The Programming Console Section 4-4

45

Except for the SHIFT key on the upper right, the gray keys are used to input
instructions and designate data area prefixes when inputting or changing a
program. The SHIFT key is similar to the shift key of a typewriter, and is used
to alter the function of the next key pressed. (It is not necessary to hold the
SHIFT key down; just press it once and then press the key to be used with
it.)

The gray keys other than the SHIFT key have either the mnemonic name of
the instruction or the abbreviation of the data area written on them. The func-
tions of these keys are described below.

Pressed before the function code when in-
putting an instruction via its function code.

Pressed to enter SFT (the Shift Register
instruction).

Input after a ladder instruction to designate
an normally closed condition.

Pressed to enter AND (the AND instruc-
tion) or used with NOT to enter AND NOT.

Pressed to enter OR (the OR instruction)
or used with NOT to enter OR NOT.

Pressed to enter CNT (the Counter instruc-
tion) or to designate a TC number that has
already been defined as a counter.

Pressed to enter LD (the Load instruction)
or used with NOT to enter LD NOT. Also
pressed to indicate an input bit.

Pressed to enter OUT (the Output instruc-
tion) or used with NOT to enter OUT NOT.
Also pressed to indicate an output bit.

Pressed to enter TIM (the Timer instruc-
tion) or to designate a TC number that has
already been defined as a timer.

Pressed before designating an address in
the TR area.

Pressed before designating an address in
the LR area. Cannot be used with the K-type
PCs.

Pressed before designating an address in
the HR area.

Pressed before designating an address in
the DM area.

Pressed before designating an indirect DM
address. Cannot be used with the K-type
PCs.

Pressed before designating a word address.

Pressed before designating an operand as a
constant.

Pressed before designating a bit address.

4-4-2 PC Modes
The Programming Console is equipped with a switch to control the PC mode.
To select one of three operating modes—RUN, MONITOR, or PROGRAM—
use the mode switch. The mode that you select will determine PC operation
as well as the procedures that are possible from the Programming Console.

RUN mode is the mode used for normal program execution. When the switch
is set to RUN and the START input on the CPU Power Supply Unit is ON, the
CPU will begin executing the program according to the program written in its
Program Memory. Although monitoring PC operation from the Programming
Console is possible in RUN mode, no data in any of the memory areas can
be input or changed.

MONITOR mode allows you to visually monitor in-progress program execu-
tion while controlling I/O status, changing PV (present values) or SV (set val-
ues), etc. In MONITOR mode, I/O processing is handled in the same way as
in RUN mode. MONITOR mode is generally used for trial system operation
and final program adjustments.

Gray Instruction and Data
Area Keys

The Programming Console Section 4-4

!

!

46

In PROGRAM mode, the PC does not execute the program. PROGRAM
mode is for creating and changing programs, clearing memory areas, and
registering and changing the I/O table. A special Debug operation is also
available within PROGRAM mode that enables checking a program for cor-
rect execution before trial operation of the system.

 DANGER Do not leave the Programming Console connected to the PC by an extension
cable when in RUN mode. Noise entering via the extension cable can affect the
program in the PC and thus the controlled system.

When the PC is turned on, the mode it is in will depend on what Peripheral
Device, if any, is connected or mounted to the CPU.

• No Peripheral Device Connected
When power is applied to the PC without a Peripheral Device connected,
the PC is automatically set to RUN mode. Program execution is then con-
trolled through the CPU Power Supply Unit’s START terminal.

• Programming Console Connected
If the Programming Console is connected to the PC when PC power is ap-
plied, the PC is set to the mode set on the Programming Console’s mode
switch.

• Other Peripheral Connected
If a Peripheral Interface Unit, PROM Writer, Printer Interface Unit, or a
Floppy Disk Interface Unit is attached to the PC when PC power is turned
on, the PC is automatically set to PROGRAM mode.

If the PC power supply is already turned on when a peripheral device is at-
tached to the PC, the PC will stay in the same mode it was in before the pe-
ripheral device was attached. The mode can be changed with the mode
switch on the Programming Console once the password has been entered. If
it is necessary to have the PC in PROGRAM mode, (for the PROM Writer,
Floppy Disk Interface Unit, etc.), be sure to select this mode before connect-
ing the peripheral device, or alternatively, apply power to the PC after the pe-
ripheral device is connected.

The mode will also not change when a Peripheral Device is removed from
the PC after PC power is turned on.

 DANGER Always confirm that the Programming Console is in PROGRAM mode when
turning on the PC with a Programming Console connected unless another mode
is desired for a specific purpose. If the Programming Console is in RUN mode
when PC power is turned on, any program in Program Memory will be executed,
possibly causing any PC-controlled system to begin operation. Also be sure that
starting operation is safe and appropriate whenever turning on the PC without a
device mounted to the CPU when the START input on the CPU Power Supply
Unit is ON.

4-5 Preparation for Operation
This section describes the procedures required to begin Programming Con-
sole operation. These include password entry, clearing memory, and error
message clearing.

The following sequence of operations must be performed before beginning
initial program input.

1, 2, 3... 1. Confirm that all wiring for the PC has been installed and checked prop-
erly.

2. Confirm that a RAM Unit is mounted as the Memory Unit and that the
write-protect switch is OFF.

Mode Changes

Preparation for Operation Section 4-5

47

3. Connect the Programming Console to the PC. Make sure that the Pro-
gramming Console is securely connected or mounted to the CPU; im-
proper connection may inhibit operation.

4. Set the mode switch to PROGRAM mode.
5. Turn on PC power.
6. Enter the password.
7. Clear memory.
Each of these operations from entering the password on is described in detail
in the following subsections. All operations should be done in PROGRAM
mode unless otherwise noted.

4-5-1 Entering the Password
To gain access to the PC’s programming functions, you must first enter the
password. The password prevents unauthorized access to the program.

The PC prompts you for a password when PC power is turned on or, if PC
power is already on, after the Programming Console has been connected to
the PC. To gain access to the system when the “Password!” message ap-
pears, press CLR and then MONTR. Then press CLR to clear the display.

If the Programming Console is connected to the PC when PC power is al-
ready on, the first display below will indicate the mode the PC was in before
the Programming Console was connected. Be sure that the PC is in PRO-
GRAM mode before you enter the password. When the password is en-
tered, the PC will shift to the mode set on the mode switch, causing PC op-
eration to begin if the mode is set to RUN or MONITOR. You can change the
mode to RUN or MONITOR with the mode switch after entering the pass-
word.

Indicates the mode set by the mode selector switch.

<PROGRAM>
PASSWORD

<PROGRAM>

4-5-2 Clearing Memory
Using the Memory Clear operation it is possible to clear all or part of the Pro-
gram Memory, and the IR, HR, DM and TC areas. Unless otherwise speci-
fied, the clear operation will clear all memory areas above provided that the
Memory Unit attached to the PC is a RAM Unit or an EEPROM Unit and the
write-protect switch is OFF. If the write-protect switch is ON, or the Memory
Unit is an EPROM Unit, Program Memory cannot be cleared.

Before beginning to programming for the first time or when installing a new
program, all areas should normally be cleared. Before clearing memory,
check to see if a program is already loaded that you need. If you need the
program, clear only the memory areas that you do not need, and be sure to
check the existing program with the program check key sequence before us-
ing it. The check sequence is provided later in this section. Further debug-
ging methods are provided in Section 7 Program Debugging and Execution.
To clear all memory areas, press CLR until all zeros are displayed and then
the top line of the following sequence. The branch lines in the sequence are
used when clearing only part of the memory areas, which is described below.
Memory can be cleared in PROGRAM mode only.

Preparation for Operation Section 4-5

48

Key Sequence

The following procedure is used to clear memory completely.

0000

0000MEMORY CLR?
 HR CNT DM

0000MEMORY CLR
END HR CNT DM

0000

0000

It is possible to retain the data in specified areas and/or part of the Program
Memory. To retain the data in the HR and TC, and/or DM areas, press the
appropriate key after entering REC/RESET. The CNT key is used for the en-
tire TC area. The display will show those areas that will be cleared.

It is also possible to retain a portion of the Program Memory from the begin-
ning to a specified address. After designating the data areas to be retained,
specify the first Program Memory address to be cleared. For example, to
leave addresses 0000 to 0122 untouched, but to clear addresses from 0123
to the end of Program Memory, input 0123.

All Clear

Partial Clear

Preparation for Operation Section 4-5

49

For example, to leave the TC area uncleared and retaining Program Memory
addresses 0000 through 0122, input as follows:

0000

0000

0000

0000MEMORY CLR?
 HR CNT DM

0000MEMORY CLR?
 HR DM

0123MEMORY CLR?
 HR DM

0000MEMORY CLR
END HR DM

4-5-3 Clearing Error Messages
Any error messages recorded in memory should also be cleared. It is as-
sumed here that the causes of any of the errors for which error messages
appear have already been taken care of. If the beeper sounds when an at-
tempt is made to clear an error message, eliminate the cause of the error,
and then clear the error message (refer to Section 8 Troubleshooting).

To display any recorded error messages, press CLR, FUN, and then
MONTR. The first message will appear. Pressing MONTR again will clear the
present message and display the next error message. Continue pressing
MONTR until all messages have been cleared.

Although error messages can be accessed in any mode, they can be cleared
only in PROGRAM mode.

Key Sequence

4-6 Inputting, Modifying, and Checking the Program
Once a program is written in mnemonic code, it can be input directly into the
PC from a Programming Console. Mnemonic code is keyed into Program
Memory addresses from the Programming Console. Checking the program
involves a syntax check to see that the program has been written according
to syntax rules before trial execution and finally correction under actual con-
ditions can begin.

The operations required to input a program are explained below. Operations
to modify programs that already exist in memory are also provided in this
section, as well as the procedure to obtain the current cycle time.

Inputting, Modifying, and Checking the Program Section 4-6

50

Before starting to input a program, check to see whether there is a program
already loaded. If there is a program already loaded that you do not need,
clear it first using the program memory clear key sequence, then input the
new program. If you need the previous program, be sure to check it with the
program check key sequence and correct it as required. Further debugging
methods are provided in Section 7 Program Debugging and Execution.

4-6-1 Setting and Reading from Program Memory Address
When inputting a program for the first time, it is generally input from Program
Memory address 0000. As this address appears when the display is cleared,
it is not necessary to input it.

When inputting a program starting from other than 0000 or to read or modify
a program that already exists in memory, the desired address must be desig-
nated. To designate an address, press CLR and then input the desired ad-
dress. Leading zeros of the address need not be input, i.e., when specifying
an address such as 0053 you need to enter only 53. The contents of the des-
ignated address will not be displayed until the down key is pressed.

Once the down key has been pressed to display the contents of the desig-
nated address, the up and down keys can be used to scroll through Program
Memory. Each time one of these keys is pressed, the next or previous word
in Program Memory will be displayed.

If Program Memory is read in RUN or MONITOR mode, the ON/OFF status
of any bit displayed will also be shown.

If the following mnemonic code has already been input into Program Memory,
the key inputs below would produce the displays shown.

0000

0200

0200READ OFF
LD 0000

0201READ ON
AND 0001

0202READ OFF
TIM 00

0202TIM DATA
 #0123

0203READ ON
LD 0100

Address Instruction Operands

0200 LD 0000

0201 AND 0001

0202 TIM 00

0123

0203 LD 0100

Key Sequence

Example

Inputting, Modifying, and Checking the Program Section 4-6

!

51

4-6-2 Inputting or Overwriting Programs

Programs can be input or overwritten only in PROGRAM mode.

The same procedure is used to either input a program for the first time or to
overwrite a program that already exists. In either case, the current contents
of Program Memory are overwritten, i.e., if there is no previous program, the
NOP(00) instruction, which will be written at every address, will be overwrit-
ten.

To input a program, just follow the mnemonic code that was produced from
the ladder diagram, making sure that the proper address is set before start-
ing. Once the proper address is displayed, input the first instruction word,
press WRITE, and then input any operands required, pressing WRITE after
each, i.e., WRITE is pressed at the end of each line of the mnemonic code.
When WRITE is pressed, the designated instruction will be input and the next
display will appear. If the instruction requires two or more words, the next
display will indicate the next operand required and provide a default value for
it. If the instruction requires only one word, the next address will be dis-
played. Continue inputting each line of the mnemonic code until the entire
program has been input.

When inputting numeric values for operands, it is not necessary to input lead-
ing zeros. Leading zeros are required only when inputting function codes
(see below). When designating operands, be sure to designate the data area
for all but IR and SR addresses by pressing the corresponding data area key
or to designate a constant by pressing CONT/#. CONT/# is not required for
counter or timer SV (see below). TC numbers as bit operands (i.e., comple-
tion flags) are designated by pressing either TIM or CNT before the address,
depending on whether the TC number has been used to define a timer or a
counter.

The SV (set value) for a timer or counter is generally input as a constant, al-
though inputting the address of a word that holds the SV is also possible.
When inputting an SV as a constant, CONT/# is not required; just input the
numeric value and press WRITE. To designate a word, press CLR and then
input the word address as described above.

The most basic instructions are input using the Programming Console keys
provided for them. All other instructions are input using function codes.
These function codes are always written after the instruction’s mnemonic. If
no function code is given, there should be a Programming Console key for
that instruction.

To input an instruction word using a function code, set the address, press
FUN, input the function code including any leading zero, input any bit oper-
ands or definers required on the instruction line, and then press WRITE.

Caution Enter function codes with care.

Inputting SV for Counters
and Timers

Designating Instructions

Inputting, Modifying, and Checking the Program Section 4-6

52

The following ladder diagram can be input using the key inputs shown below.
Displays will appear as indicated.

0000

0200

0200
LD 0002

0201READ
NOP (00)

0201
TIM 00

0201 TIM DATA
 #0000

0201 TIM
 #0123

0202READ
NOP (00)

0202
FUN (??)

0202
TIMH (15) 01

0202 TIMH DATA
 #0000

0202 TIMH
 #0500

0203READ
NOP (00)

Address Instruction Operands

0200 LD 0002

0201 TIM 00

0123

0202 TIMH(15) 01

0500

The following error messages may appear when inputting a program. Correct
the error as indicated and continue with the input operation. The asterisks in
the displays shown below will be replaced with numeric data, normally an
address, in the actual display.

Message Cause and correction

****REPL ROM An attempt was made to write to ROM or to write-protected RAM. Be sure a RAM Unit is mounted
and that its write-protect switch is set to OFF.

****PROG OVER The instruction at the last address in memory is not NOP(00). Erase all unnecessary instructions
at the end of the program or use a larger Memory Unit.

****ADDR OVER An address was set that is larger than the highest memory in Program Memory. Input a smaller
address

****SETDATA ERR Data has been input in the wrong format or beyond defined limits, e.g., a hexadecimal value has
been input for BCD. Reinput the data.

****I/O NO. ERR A data area address has been designated that exceeds the limit of the data area, e.g., an
address is too large. Confirm the requirements for the instruction and reinput the address.

Example

Error Messages

Inputting, Modifying, and Checking the Program Section 4-6

53

4-6-3 Checking the Program
Once a program has been input, it should be checked for syntax to be sure
that no programming rules have been violated. This check should also be
performed if the program has been changed in any way that might create a
syntax error.

To check the program, input the key sequence shown below. If an error is
discovered, the check will stop and a display indicating the error will appear.
Press SRCH to continue the check. If an error is not found, the program will
be checked through the first END(01), with a display indicating when each 64
instructions have been checked (e.g., display #1 below).

CLR can be pressed to cancel the check after it has been started, and a dis-
play like display #2, in the example, will appear. When the check has reached
the first END, a display like display #3 will appear.

A syntax check can be performed on a program only in PROGRAM mode.

Key Sequence

The following table provides the error types, displays, and explanations of all
syntax errors. The address where the error was generated will also be dis-
played.

Many of the following errors are for instructions that have not been intro-
duced yet. Refer to 4-7 Controlling Bit Status or to Section 5 Instruction Set
for details on these.

Message Meaning and appropriate response

????? The program has been destroyed. Reinput the program.

NO END INSTR There is no END(01) in the program. Write END(01) at the final address in the program.

CIRCUIT ERR The number of logic blocks and logic block instructions does not agree, i.e., either LD or LD NOT
has been used to start a logic block whose execution condition has not been used by another
instruction or a logic block instruction has been used that does not have the required number of
logic blocks (i.e., unused execution conditions). Check your program.

IL-ILC ERR IL(02) and ILC(03) are not used in pairs. Correct the program so that each IL(02) has a unique
ILC(03). Although this error message will appear if more than one IL(02) is used with the same
ILC(03), the program will be executed as written. Make sure your program is written as desired
before proceeding.

JMP-JME ERR JMP(04) and JME(05) are not used in pairs. Match each JMP(04) to a JME(05).

COIL DUPL The same bit is being controlled (i.e., turned ON and/or OFF) by more than one instruction (e.g.,
OUT, OUT NOT, DIFU(13), DIFD(14), KEEP(11), SFT(10)). Although this is allowed for certain
instructions, check instruction requirements to confirm that the program is correct or rewrite the
program so that each bit is controlled by only one instruction.

DIF OVER More than 48 DIFU and DIFDs are used in the program. Reduce the number of DIFU(13) and
DIFD(14) used to 48 or less.

LOCN ERR The instruction currently displayed is in the wrong area. Correct the program.

JME UNDEFD The corresponding JME for a given JMP does not exist. Correct the program.

JMP UNDEFD The corresponding JMP for a given JME does not exist. Correct the program.

DUPL The number of the currently displayed instruction has already been programmed. Correct the
program.

SBN-RET ERR Incorrect usage of the displayed instruction (SBN or RET). Incorrect SBN usage is caused by
more than one SBN having the same subroutine number. Correct the program.

SBN UNDEFD The subroutine called by SBS does not exist. Correct the program.

Error Messages

Inputting, Modifying, and Checking the Program Section 4-6

54

Message Meaning and appropriate response

SBS UNDEFD A defined subroutine is not called by the main program. When this message is displayed because
of interrupt routine definition, there is no problem. In all other cases, correct the program.

STEP OVER STEP is used for more than 16 program sections. Correct the program to decrease the number of
sections to 16 or less. When the GPC is used the message “CPU WAITG” is displayed.

SNXT OVER More than 48 SNTXs are used in the program. Correct the program to decrease the number to 48
or less.

STEP ERR STEP and SNXT are not correctly used. Correct the program.

The following examples shows some of the displays that can appear as a
result of a program check.

Display #1

Display
#2

Display
#3

Halts program check

Check continues until END(01)

When errors are found

0128PROG CHKEND

1150PROG CHK
END (01)

0178CIRCUIT ERR
OUT 0200

0196COIL DUPL
OUT 0500

0200IL-ILC ERR
ILC (03)

1193NO ENDINSTR
END

0000

0064PROG CHK

4-6-4 Displaying the Cycle Time
Once the program has been cleared of syntax errors, the cycle time should
be checked. This is possible only in RUN or MONITOR mode while the pro-
gram is being executed. See Section 6 Program Execution Timing for details
on the cycle time.

To display the current average cycle time, press CLR then MONTR. The time
displayed by this operation is an average cycle time. The differences in dis-
played values depend on the execution conditions that exist when MONTR is
pressed.

Note Cycle time is displayed as scan time.

Example

Inputting, Modifying, and Checking the Program Section 4-6

55

Example

0000

0000SCAN TIME
 AVG 054.1MS

0000SCAN TIME
 AVG 053.9MS

4-6-5 Program Searches
The program can be searched for occurrences of any designated instruction
or data area bit address used in an instruction. Searches can be performed
from any currently displayed address or from a cleared display.

To designate a bit address, press SHIFT, press CONT/#, then input the ad-
dress, including any data area designation required, and press SRCH. To
designate an instruction, input the instruction just as when inputting the pro-
gram and press SRCH. Once an occurrence of an instruction or bit address
has been found, any additional occurrences of the same instruction or bit can
be found by pressing SRCH again. SRCHG will be displayed while a search
is in progress.

When the first word of a multiword instruction is displayed for a search opera-
tion, the other words of the instruction can be displayed by pressing the down
key before continuing the search.

If Program Memory is read in RUN or MONITOR mode, the ON/OFF status
of any bit displayed will also be shown.

Key Sequence

Inputting, Modifying, and Checking the Program Section 4-6

56

Example: Instruction Search

0000

0000
LD 0000

0200SRCH
LD 0000

0202
LD 0000

1082SRCH
END (01)

0000

0100

0100
TIM 01

0203SRCH
TIM 01

0203 TIM DATA
 #0123

Example: Bit Search

0000

0000
CONT 0005

0200CONT SRCH
LD 0005

0203CONT SRCH
AND 0005

1078CONT SRCH
END (01)

Inputting, Modifying, and Checking the Program Section 4-6

!

57

4-6-6 Inserting and Deleting Instructions
In PROGRAM mode, any instruction that is currently displayed can be de-
leted or another instruction can be inserted before it. These are not possible
in RUN or MONITOR modes.

To insert an instruction, display the instruction before which you want the new
instruction to be placed, input the instruction word in the same way as when
inputting a program initially, and then press INS and the down key. If other
words are required for the instruction, input these in the same way as when
inputting a program initially.

To delete an instruction, display the instruction word of the instruction to be
deleted and then press DEL and the up key. All the words for the designated
instruction will be deleted.

Caution Be careful not to inadvertently delete instructions; there is no way to recover
them without reinputting them completely.

Key Sequence

When an instruction is inserted or deleted, all addresses in Program Memory
following the operation are adjusted automatically so that there are no blank
addresses and no unaddressed instructions.

The following mnemonic code shows the changes that are achieved in a pro-
gram through the key sequences and displays shown below.

Original Program

Address Instruction Operands

0000 LD 0100

0001 AND 0101

0002 LD 0201

0003 AND NOT 0102

0004 OR LD ---

0005 AND 0103

0006 AND NOT 0104

0007 OUT 0201

0008 END(01) ---

01050100 0103 01040101

0201

END(01)

0102

0201

Delete

01040100 0103

0105

0101

0201

END(01)

0102

0201

Before Insertion: Before Deletion:

Example

Inputting, Modifying, and Checking the Program Section 4-6

58

The following key inputs and displays show the procedure for achieving the
program changes shown above.

Find the address prior
to the insertion point

Insert the
instruction

Program After Insertion

Inserting an Instruction

0000

0000
OUT 0000

0000
OUT 0201

0207SRCH
OUT 0201

0206READ
AND NOT 0104

0206
AND 0000

0206
AND 0105

0206INSERT?
AND 0105

0207INSERT END
AND NOT 0104

0206READ
AND 0105

Address Instruction Operands

0000 LD 0100

0001 AND 0101

0002 LD 0201

0003 AND NOT 0102

0004 OR LD ---

0005 AND 0103

0006 AND 0105

0007 AND NOT 0104

0008 OUT 0201

0009 END(01) ---

Inputting, Modifying, and Checking the Program Section 4-6

59

Find the instruction
that requires deletion.

Confirm that this is the
instruction to be deleted.

Program After Deletion

Deleting an Instruction

0000

0000
OUT 0000

0000
OUT 0201

0208SRCH
OUT 0201

0207READ
AND NOT 0104

0207 DELETE?
AND NOT 0104

0207DELETE END
OUT 0201

0206READ
AND 0105

Address Instruction Operands

0000 LD 0100

0001 AND NOT 0101

0002 LD 0201

0003 AND NOT 0102

0004 OR LD ---

0005 AND 0103

0006 AND 0105

0007 AND NOT 0104

0008 OUT 0201

4-7 Controlling Bit Status
There are five instructions that can be used generally to control individual bit
status. These are the OUTPUT or OUT, OUTPUT NOT or OUT NOT, DIF-
FERENTIATE UP, DIFFERENTIATE DOWN, and KEEP instructions. All of
these instruction appear as the last instruction in an instruction line and take
a bit address for an operand. Although details are provided in 5-6 Bit Control
Instructions, these instructions are described here because of their impor-
tance in most programs. Although these instructions are used to turn ON and
OFF output bits in the IR area (i.e., to send or stop output signals to external
devices), they are also used to control the status of other bits in the IR area
or in other data areas.

4-7-1 DIFFERENTIATE UP and DIFFERENTIATE DOWN

DIFFERENTIATE UP (DIFU(13)) and DIFFERENTIATE DOWN (DIFD(14))
instructions are used to turn the operand bit ON for one cycle at a time. The
DIFFERENTIATE UP turns ON the operand bit for one cycle after the execu-
tion condition when it goes from OFF to ON; the DIFFERENTIATE DOWN
instruction turns ON the operand bit for one cycle after the execution condi-
tion when it goes from ON to OFF.

0000

0001

DIFU(13) 0500

DIFD(14) 0501

Address Instruction Operands

0000 LD 0000

0001 DIFU(13) 0500

Address Instruction Operands

0000 LD 0001

0001 DIFD(14) 0501

Controlling Bit Status Section 4-7

60

Here, 0500 will be turned ON for one cycle after 0000 goes ON. The next
time DIFU(13) 0500 is executed, 0500 will be turned OFF, regardless of the
status of 0000. With the DIFFERENTIATE DOWN instruction, 0501 will be
turned ON for one cycle after 0001 goes OFF (0501 will be kept OFF until
then) and will be turned ON the next time DIFD(14) is executed.

4-7-2 KEEP
The KEEP instruction is used to maintain the status of the operand bit based
on two execution conditions. To do this, the KEEP instruction is connected to
two instruction lines. When the execution condition at the end of the first in-
struction line is ON, the operand bit of the KEEP instruction is turned ON.
When the execution condition at the end of the second instruction line is ON,
the operand bit of the KEEP instruction is turned OFF. The operand bit for the
KEEP instruction will maintain its ON or OFF status even if it is located in an
interlocked section of the diagram and the execution condition for the INTER-
LOCK instruction is ON.

In the following example, HR 000 will be turned ON when 0002 is ON and
0003 is OFF. HR 000 will then remain ON until either 0004 or 0005 turns ON.

S:set

R: reset

 KEEP(11)

HR 000

0002

0004

0003

0005

Address Instruction Operands

0000 LD 0002

0001 AND NOT 0003

0002 LD 0004

0003 OR 0005

0004 KEEP(11) HR 000

4-7-3 Self-maintaining Bits (Seal)
Although the KEEP instruction can be used to create self maintaining bits, it
is sometimes necessary to create self maintaining bits in another way so that
they can be turned OFF when in an interlocked section of a program.

To create a self maintaining bit, the operand bit of an OUTPUT instruction is
used as a condition for the same OUTPUT instruction in an OR setup so that
the operand bit of the OUTPUT instruction will remain ON or OFF until
changes in other bits occur. At least one other condition is used just before
the OUTPUT instruction to function as a reset. Without this reset, there would
be no way to control the operand bit of the OUTPUT instruction.

The above diagram for the KEEP instruction can be rewritten as shown be-
low. The only difference in these diagrams would be their operation in an in-
terlocked program section when the execution condition for the INTERLOCK
instruction was ON. Here, just as in the same diagram using the KEEP in-
struction, two reset bits are used, i.e., HR 000 is turned OFF by turning ON
both 0004 and 0005.

0002 0003

HR 000

HR 000

0004

0005

Address Instruction Operands

0000 LD 0002

0001 AND NOT 0003

0002 OR HR 000

0003 AND NOT 0004

0004 OR NOT 0005

0005 OUT HR 000

Controlling Bit Status Section 4-7

61

4-8 Work Bits (Internal Relays)
In programming, combining conditions to directly produce execution condi-
tions is often extremely difficult. These difficulties are easily overcome, how-
ever, by using certain bits to trigger other instructions indirectly. Such pro-
gramming is achieved by using work bits. Sometimes entire words are re-
quired for these purposes. These words are referred to as work words.

Work bits are not transferred to or from the PC. They are bits selected by the
programmer to facilitate programming as described above. I/O bits and other
dedicated bits cannot be used as works bits. All bits in the IR area that are
not allocated as I/O bits, and certain unused bits in the AR area, are avail-
able for use as work bits. Be careful to keep an accurate record of how and
where you use work bits. This helps in program planning and writing, and
also aids in debugging operations.

Work Bit Applications Examples given later in this subsection show two of the most common ways
to employ work bits. These should act as a guide to the almost limitless num-
ber of ways in which the work bits can be used. Whenever difficulties arise in
programming a control action, consideration should be given to work bits and
how they might be used to simplify programming.

Work bits are often used with the OUTPUT, OUTPUT NOT, DIFFERENTIATE
UP, DIFFERENTIATE DOWN, and KEEP instructions. The work bit is used
first as the operand for one of these instructions so that later it can be used
as a condition that will determine how other instructions will be executed.
Work bits can also be used with other instructions, e.g., with the SHIFT REG-
ISTER instruction (SFT(10)). An example of the use of work words and bits
with the SHIFT REGISTER instruction is provided in 5-12-1 SHIFT REGIS-
TER - SFT(10).

Although they are not always specifically referred to as work bits, many of the
bits used in the examples in Section 5 Instruction Set use work bits. Under-
standing the use of these bits is essential to effective programming.

Work Bits (Internal Relays) Section 4-8

62

Work bits can be used to simplify programming when a certain combination
of conditions is repeatedly used in combination with other conditions. In the
following example, IR 0000, IR 0001, IR 0002, and IR 0003 are combined in
a logic block that stores the resulting execution condition as the status of IR
0112. IR 0112 is then combined with various other conditions to determine
output conditions for IR 0100, IR 0101, and IR 0102, i.e., to turn the outputs
allocated to these bits ON or OFF.

0000

0003

0001

0004

0002

0005

0004

0007

0006

00050112

0112

0112

0112

0100

0101

0102

Address Instruction Operands

0000 LD 0000

0001 AND NOT 0001

0002 OR 0002

0003 OR NOT 0003

0004 OUT 0112

0005 LD 0112

0006 AND 0004

0007 AND NOT 0005

0008 OUT 0100

0009 LD 0112

0010 OR NOT 0004

0011 AND 0005

0012 OUT 0101

0013 LD NOT 0112

0014 OR 0006

0015 OR 0007

0016 OUT 0102

Reducing Complex
Conditions

Work Bits (Internal Relays) Section 4-8

63

Differentiated Conditions Work bits can also be used if differential treatment is necessary for some, but
not all, of the conditions required for execution of an instruction. In this exam-
ple, IR 0100 must be left on continuously as long as IR 0001 is ON and both
IR 0002 and IR 0003 are OFF, or as long as IR 0004 is ON and IR 0005 is
OFF. It must be turned ON for only one cycle each time IR 0000 turns ON
(unless one of the preceding conditions is keeping it ON continuously).

This action is easily programmed by using IR 0112 as a work bit as the oper-
and of the DIFFERENTIATE UP instruction (DIFU(13)). When IR 0000 turns
ON, IR 0112 will be turned ON for one cycle and then be turned OFF the next
cycle by DIFU(13). Assuming the other conditions controlling IR 0100 are not
keeping it ON, the work bit IR 0112 will turn IR 0100 ON for one cycle only.

0112

DIFU(13) 0112

0000

0001 0002 0003

0004 0005

0100

Address Instruction Operands

0000 LD 0000

0001 DIFU(13) 0112

0002 LD 0112

0003 LD 0001

0004 AND NOT 0002

0005 AND NOT 0003

0006 OR LD ---

0007 LD 0004

0008 AND NOT 0005

0009 OR LD ---

0010 OUT 0100

4-9 Programming Precautions
The number of conditions that can be used in series or parallel is unlimited.
Therefore, use as many conditions as required to draw a clear diagram. Al-
though very complicated diagrams can be drawn with instruction lines almost
forming mazes, there must not be any conditions on instruction lines running
vertically between two other instruction lines. Diagram A shown below, for
example, is not possible, and should be redrawn as diagram B.

Instruction 2

Instruction 1

0002

0003

0000

0001

0004

Diagram A

Instruction 1

0004

0003

0000

0001

Diagram B

0002

Instruction 2

00040000

0001

Address Instruction Operands

0000 LD 0001

0001 AND 0004

0002 OR 0000

0003 AND 0002

0004 Instruction 1

0005 LD 0000

0006 AND 0004

0007 OR 0001

0008 AND NOT 0003

0009 Instruction 2

The number of times any particular bit can be assigned to conditions is not
limited, so use them as many times as required to simplify your program.

Programming Precautions Section 4-9

64

Often, complicated programs are the result of attempts to reduce the number
of times a bit is used.

Every instruction line must also have at least one condition on it to determine
the execution condition for the instruction at the right. Again, diagram A , be-
low, must be redrawn as diagram B. If an instruction must always be exe-
cuted (e.g., if an output must always be kept ON while the program is being
executed), the Always ON Flag (1813) in the SR area can be used.

Instruction
1813

Instruction

Diagram A

Diagram B

Address Instruction Operands

0000 LD 1813

0001 Instruction

There are, however, a few exceptions to this rule, including the INTERLOCK
CLEAR, JUMP END, and STEP Instructions. Each of these instructions is
used as the second of a pair of instructions and is controlled by the execution
condition of the first of the pair. Conditions should not be placed on the in-
struction lines leading to these instructions. Refer to Section 5 Instruction Set
for details.

When drawing ladder diagrams, it is important to keep in mind the number of
instructions that will be required to input it. In diagram A, below, an OR Load
instruction will be required to combine the top and bottom instruction lines.
This can be avoided by redrawing as shown in diagram B so that no AND
LOAD or OR LOAD instructions are required. Refer to 5-5-2 AND LOAD and
OR LOAD for more details and 4-6 Inputting, Modifying and Checking the
Program for further examples.

0000

0001 0207

0207

0001

0000

0207
0207

Diagram A:

Diagram B:

Address Instruction Operands

0000 LD 0000

0001 LD 0001

0002 AND 0207

0003 OR LD ---

0004 OUT 0207

Address Instruction Operands

0000 LD 0001

0001 AND 0207

0002 OR 0000

0003 OUT 0207

Programming Precautions Section 4-9

65

4-10 Program Execution
When program execution is started, the CPU cycles the program from top to
bottom, checking all conditions and executing all instructions accordingly as it
moves down the bus bar. It is important that instructions be placed in the
proper order so that, for example, the desired data is moved to a word before
that word is used as the operand for an instruction. Remember that an in-
struction line is completed to the terminal instruction at the right before exe-
cuting any instruction lines branching from the first instruction line to other
terminal instructions at the right.

Program execution is only one of the tasks carried out by the CPU as part of
the cycle time. Refer to Section 6 Program Execution Timing for details.

Program Execution Section 4-10

67

SECTION 5
Instruction Set

5-1 Introduction 68.
5-2 Notation 68.
5-3 Instruction Format 68.
5-4 Data Areas, Definer Values, and Flags 69.

5-4-1 Coding Other Instructions 69.
5-5 Ladder Diagram Instructions 73.

5-5-1 LOAD, LOAD NOT, AND, AND NOT, OR, and OR NOT 73.
5-5-2 AND LOAD and OR LOAD 74.

5-6 Bit Control Instructions 75.
5-6-1 OUTPUT and OUTPUT NOT – OUT and OUT NOT 75.
5-6-2 DIFFERENTIATE UP and DIFFERENTIATE DOWN –

DIFU(13) and DIFD(14) 75.
5-6-3 KEEP – KEEP(11) 77.

5-7 INTERLOCK and INTERLOCK CLEAR – IL(02) and ILC(03) 78.
5-8 JUMP and JUMP END – JMP(04) and JME(05) 80.
5-9 END – END(01) 81.
5-10 NO OPERATION – NOP(00) 81.
5-11 Timer and Counter Instructions 82.

5-11-1 TIMER – TIM 83.
5-11-2 HIGH-SPEED TIMER – TIMH(15) 86.
5-11-3 Analog Timer Unit 87.
5-11-4 COUNTER – CNT 90.
5-11-5 REVERSIBLE COUNTER – CNTR(12) 93.
5-11-6 HIGH-SPEED DRUM COUNTER – HDM(61) 94.
5-11-7 REVERSIBLE DRUM COUNTER – RDM(60) 103.

5-12 Data Shifting 106.
5-12-1 SHIFT REGISTER – SFT(10) 106.
5-12-2 REVERSIBLE SHIFT REGISTER – SFTR(84) 109.
5-12-3 WORD SHIFT – WSFT(16) 110.

5-13 Data Movement 111.
5-13-1 MOVE – MOV(21) 111.
5-13-2 MOVE NOT – MVN(22) 112.

5-14 DATA COMPARE – CMP(20) 112.
5-15 Data Conversion 115.

5-15-1 BCD-TO- BINARY – BIN(23) 115.
5-15-2 BINARY-TO-BCD – BCD(24) 115.
5-15-3 4-TO-16 DECODER – MLPX(76) 116.
5-15-4 16-TO-4 ENCODER – DMPX(77) 118.

5-16 BCD Calculations 120.
5-16-1 BCD ADD – ADD(30) 120.
5-16-2 BCD SUBTRACT – SUB(31) 122.
5-16-3 BCD MULTIPLY – MUL(32) 123.
5-16-4 BCD DIVIDE – DIV(33) 124.
5-16-5 SET CARRY – STC(40) 125.
5-16-6 CLEAR CARRY – CLC(41) 125.

5-17 Subroutines 126.
5-17-1 SUBROUTINE DEFINE and SUBROUTINE RETURN

SBN(92)/RET(93) 126.
5-17-2 SUBROUTINE ENTRY – SBS(91) 126.

5-18 Step Instructions 128.
5-18-1 STEP DEFINE and STEP START – STEP(08)/SNXT(09) 128.

5-19 Special Instructions 135.
5-19-1 I/O REFRESH – IORF(97) 135.
5-19-2 END WAIT – ENDW(62) 135.
5-19-3 NOTATION INSERT – NETW(63) 136.

68

5-1 Introduction
The K-type PCs have large programming instruction sets that allow for easy
programming of complicated control processes. This section explains each
instruction individually and provides the ladder diagram symbol, data areas,
and flags used with each. Basic application examples are also provided as
required in describing the instructions.

The many instructions provided by the K-type PCs are described in following
subsections by instruction group. These groups include Ladder Diagram In-
structions, Bit Control Instructions, Timer and Counter Instructions, Data
Shifting, Data Movement, Data Comparison, Data Conversion, BCD Calcula-
tions, Subroutines, Step Instructions, and Special Instructions.

Some instructions, such as timer and counter instructions, are used to control
execution of other instructions, e.g., a TIM completion flag might be used to
turn ON a bit when the time period set for the timer has expired. Although
these other instructions are often used to control output bits through the
OUTPUT instruction, they can be used to control execution of other instruc-
tions as well. The OUTPUT instructions used in examples in this manual can
therefore generally be replaced by other instructions to modify the program
for specific applications other than controlling output bits directly.

5-2 Notation
In the remainder of this manual, all instructions will be referred to by their
mnemonics. For example, the OUTPUT instruction will be called OUT; the
AND NOT instruction, AND NOT. If you’re not sure of what instruction a mne-
monic is used for, refer to Appendix B Programming Instructions and Execu-
tion Times.

If an instruction is assigned a function code, it will be given in parentheses
after the mnemonic. These function codes, which are 2-digit decimal num-
bers, are used to input most instructions into the CPU. A table of instructions
listed in order of function codes is also provided in Appendix B Programming
Instructions and Execution Times.

5-3 Instruction Format
Most instructions have at least one or more operands associated with them.
Operands indicate or provide the data on which an instruction is to be per-
formed. These are sometimes input as the actual numeric values (i.e., as
constants), but are usually the addresses of data area words or bits that con-
tain the data to be used. A bit whose address is designated as an operand is
called an operand bit; a word whose address is designated as an operand is
called an operand word. In some instructions, the word address designated
in an instruction indicates the first of multiple words containing the desired
data.

Each instruction requires one or more words in Program Memory. The first
word is the instruction word, which specifies the instruction and contains any
definers (described below) or operand bits required by the instruction. Other
operands required by the instruction are contained in following words, one
operand per word. Some instructions require up to four words.

A definer is an operand associated with an instruction and contained in the
same word as the instruction itself. These operands define the instruction
rather than telling what data it is to be used. Examples of definers are TC
numbers, which are used in timer and counter instructions to create timer
and counters, and jump numbers, which define which JUMP instruction is

Instruction Format Section 5-3

!

69

paired with which JUMP END instruction. Bit operands are also contained in
the same word as the instruction itself, although these are not considered
definers.

5-4 Data Areas, Definer Values, and Flags
Each instruction is introduced with the ladder diagram symbol(s), the data
areas that can be used with any operand(s), and the values that can be used
for definers. With the data areas is also specified the operand names and the
type of data required for each operand (i.e., word or bit and, for words, hexa-
decimal or BCD).

Not all addresses in a specified data area are necessarily allowed in an oper-
and, e.g., if an operand requires two words, the last word in a data area can-
not be designated because all words for a single operand must be in the
same data area. Unless a limit is specified, any bit/word in the area can be
used. Specific limitations for operands and definers are specified in a Limita-
tions subsection. Refer to Section 3 Memory Areas for addressing conven-
tions and the addresses of flags and control bits.

Caution The IR and SR areas are considered as separate areas and both are not neces-
sarily allowed for an operand just because one of them is. The border between
the IR and SR area can, however, be crossed for a single operand, i.e., the last
bit in the IR area may be specified for an operand that requires more than one
word as long as the SR area is also allowed for that operand.

The Flags subsection lists flags that are affected by execution of the instruc-
tion. These flags include the following SR area flags.

Abbreviation Name Bit

ER Instruction Execution Error flag 1903

CY Carry flag 1904

EQ Equals flag 1906

GR Greater Than flag 1905

LE Less Than flag 1907

ER is the flag most often used for monitoring an instruction’s execution.
When ER goes ON, it indicates that an error has occurred in attempting to
execute the current instruction. The Flags subsection of each instruction lists
possible reasons for ER being ON. ER will turn ON for any instruction if oper-
ands are not input within established parameters. Instructions are not exe-
cuted when ER is ON. A table of instructions and the flags they affect is pro-
vided in Appendix D Error and Arithmetic Flag Operation.

Although data area addresses are most often given as operands, many oper-
ands can be input and all definers are input as constants. The range in which
a number can be specified for a given definer or operand depends on the
particular instruction that uses it. Constants must also be input in the form
required by the instruction, i.e., in BCD or in hexadecimal.

5-4-1 Coding Other Instructions
When combining other right-hand instructions with ladder diagram instruc-
tions, they would appear in the same place as the OUTs used in the example
in the preceding section. Many of these instructions, however, require more
than one word to code.

Designating Constants

Data Areas, Definer Values, and Flags Section 5-4

70

The first word of any instruction defines the instruction and provides any de-
finers and sometimes bit operands required by the instruction. All other oper-
ands (i.e., operand words) are placed in words after the instruction word, one
operand to a word, in the same order as these appear in the ladder symbol
for the instruction. Although the SV for TIM and CNT are written to the left of
the symbol on the same line as the instruction, these are the only instructions
for which one line in the ladder symbol must be coded as two words (i.e., two
lines) in the mnemonic code. Also the TC number for TIMH(15) is placed on
a second line even though it is part of the instruction word. For all other in-
structions, each line of the ladder diagram will go into one word of mnemonic
code.

The address and instruction columns of the mnemonic code table are filled in
for the instruction word only. For all other words, the left two columns are left
blank. If the instruction word requires no definer or bit operand, the data col-
umn for it is left blank. It is a good idea to cross though the blank data col-
umn for all instruction words not requiring data so that the data column can
be quickly scanned to see if any addresses have been left out.

If an IR or SR address is used in the data column, the left side of the column
is left blank. If any other data area is used, the data area abbreviation is
placed on the left side and the address is place on the right side. If a con-
stant is to be input, the number symbol (#) is placed on the left side of the
data column and the number to be input is placed on the right side. Any num-
bers input as definers in the instruction word do not require the number sym-
bol on the right side. Remember, TR bits, once defined as a timer or counter,
take a TIM (timer) or CNT (counter) prefix.

When coding an instruction that has a function code, be sure to write in the
function code, which will be necessary when inputting the instruction.

The following diagram and corresponding mnemonic code illustrate the
points described above.

TIM 00

0150

0003 0200

DIFU(13) 1500

0100

ADD(30)

#0001

0004

HR 0

MOV(21)

HR 0

HR 2

0006 0007 1505

TIM 00

1500

0002

00005

HR 015

0000 0001 Address Instruction Operands

0000 LD 0000

0001 AND 0001

0002 OR 0002

0003 DIFU(13) 1500

0004 LD 0003

0005 AND NOT 0200

0006 LD 0006

0007 AND NOT 0007

0008 AND NOT 1505

0009 OR LD

0010 AND 1500

0011 ADD(30)

0001

0004

HR 0

0012 LD 0005

0013 TIM 00

0150

0014 LD TIM 00

0015 MOV(21)

HR 0

HR 2

0016 LD HR 015

0017 OUT NOT 0100

Data Areas, Definer Values, and Flags Section 5-4

71

If a right-hand instruction requires multiple instruction lines, all of the lines for
the instruction are coded before the right-hand instruction. Each of the lines
for the instruction are coded starting with LD or LD NOT to form ‘logic blocks’
that are combined by the right-hand instruction. An example of this for
CNTR(12) is shown below.

I

P

R

CNTR(12)

02

#5000
0200 0203

0100

0201 0202 1501

1500

0002

HR 015

0000 0001
Address Instruction Operands

0000 LD 0000

0001 AND 0001

0002 LD 0002

0003 LD 0200

0004 AND NOT 0203

0005 LD 0201

0006 AND NOT 0202

0007 AND NOT 1501

0008 OR LD

0009 AND 1500

0010 CNTR(12)

02

5000

0011 LD HR 015

0012 OUT NOT 0100

TR bits in a program are used to output (OUT) the execution condition at the
branching point and then to load back (LD) the execution condition when it is
required after returning to the branch lines. Within any one instruction block,
OUT cannot be used with the same TR address. The same TR address can,
however, be used with LD as many times as required. The following example
shows an instruction block using two TR bits. TR 1 is used in LD once; TR 0,
twice.

0000 0001 0002

0003

0004

0005

0100

0101

0102

0103

TR
0

TR
1

Address Instruction Operands

0000 LD 0000

0001 OUT TR 0

0002 AND 0001

0003 OUT TR 1

0004 AND 0002

0005 OUT 0100

0006 LD TR 1

0007 AND 0003

0008 OUT 0101

0009 LD TR 0

0010 AND 0004

0011 OUT 0102

0012 LD TR 0

0013 AND NOT 0005

0014 OUT 0103

Multiple Instruction Lines

TR Bits

Data Areas, Definer Values, and Flags Section 5-4

72

If the condition assigned 0004 was not in the diagram, the second LD using
TR 0 would not be necessary because OUT with 0102 and the AND NOT
with 0005 both require the same execution condition, i.e., the execution con-
dition stored in TR 0. The diagram and mnemonic code for this program are
shown below.

0000 0001 0002

0003

0005

0100

0101

0102

0103

TR
0

TR
1

Address Instruction Operands

0000 LD 0000

0001 OUT TR 0

0002 AND 0001

0003 OUT TR 1

0004 AND 0002

0005 OUT 0100

0006 LD TR 1

0007 AND 0003

0008 OUT 0101

0009 LD TR 0

0010 OUT 0102

0011 AND NOT 0005

0012 OUT 0103

When coding IL(02) and ILC(03), the mnemonic code will be the same re-
gardless of whether the instruction is drawn as branching instruction lines or
whether IL(02) is placed on its own instruction line. If drawn as branching
instruction lines, each branch line is coded as if it were connected to the bus
bar, i.e., the first condition on each branch line corresponds to a LD or LD
NOT instruction.

0002

0000 0001

ILC(03)

IL(02)

0004
IL(02)

0006

0005

0003

0100

0101

0102

0103

Address Instruction Operands

0000 LD 0000

0001 IL(02)

0002 LD 0001

0003 OUT 0100

0004 LD 0002

0005 IL(02)

0006 LD 0003

0007 AND NOT 0004

0008 OUT 0101

0009 LD 0005

0010 OUT 0102

0011 LD 0006

0012 OUT 0103

0013 ILC(03)

Interlocks

Data Areas, Definer Values, and Flags Section 5-4

73

5-5 Ladder Diagram Instructions
Ladder diagram instructions include ladder instructions and logic block in-
structions. Ladder instructions correspond to the conditions on the ladder
diagram. Logic block instructions are used to relate more complex parts of
the diagram that cannot be programmed with ladder instructions alone.

5-5-1 LOAD, LOAD NOT, AND, AND NOT, OR, and OR NOT

B: Bit

IR, SR, HR, TC, TR

Ladder Symbol Operand Data AreasLOAD – LD

B

B: Bit

IR, SR, HR, TC, TR

Ladder Symbol Operand Data AreasLOAD NOT – LD NOT

B

B: Bit

IR, SR, HR, TC, TR

Ladder Symbol Operand Data AreasAND – AND

B

B: Bit

IR, SR, HR, TC, TR

Ladder Symbol Operand Data AreasAND NOT – AND NOT

B

B: Bit

IR, SR, HR, TC, TR

Ladder Symbol Operand Data AreasOR – OR

B

B: Bit

IR, SR, HR, TC, TR

Ladder Symbol Operand Data AreasOR NOT – OR NOT

B

There is no limit in the number of any of these instructions or in the order in
which they must be used as long as the memory capacity of the PC is not
exceeded.

Limitations

Ladder Diagram Instructions Section 5-5

74

These six basic instructions correspond to the conditions on a ladder dia-
gram. As described in Section 4 Writing and Inputting the Program, the
status of the bits assigned to each instruction determines the execution con-
ditions for all other instructions. Each of these instructions can be used as
many times and a bit address can be used in as many of these instructions
as required.

The status of the bit operand (B) assigned to LD or LD NOT determines the
first execution condition. AND takes the logical AND between the execution
condition and the status of its bit operand; AND NOT, the logical AND be-
tween the execution condition and the inverse of the status of its bit operand.
OR takes the logical OR between the execution condition and the status of its
bit operand; OR NOT, the logical OR between the execution condition and
the inverse of the status of its bit operand. The ladder symbol for loading TR
bits is different from that shown above. Refer to Section 4 Writing and Input-
ting the Program.

There are no flags affected by these instructions.

5-5-2 AND LOAD and OR LOAD

Ladder Symbol

AND LOAD – AND LD
0002

0003

0000

0001

Ladder Symbol

OR LOAD – OR LD
0000 0001

0002 0003

When the above instructions are combined into blocks that cannot be logi-
cally combined using only OR and AND operations, AND LD and OR LD are
used. Whereas AND and OR operations logically combine a bit status and an
execution condition, AND LD and OR LD logically combine two execution
conditions, the current one and the last unused one.

AND LD and OR LD instruction are not necessary to draw ladder diagrams,
nor are they necessary when inputting ladder diagrams directly, as is possi-
ble from the GPC. They are required, however, to convert the program to and
input it in mnemonic form.

In order to reduce the number of programming instruction required, a basic
understanding of logic block instructions is required.

There are no flags affected by these instructions.

Description

Flags

Description

Flags

Ladder Diagram Instructions Section 5-5

75

5-6 Bit Control Instructions
There are five instructions that can be used generally to control individual bit
status. These are OUT, OUT NOT, DIFU(13), DIFD(14), and KEEP(11).
These instructions are used to turn bits ON and OFF in different ways.

5-6-1 OUTPUT and OUTPUT NOT – OUT and OUT NOT

B: Bit

IR, HR, TR

Ladder Symbol Operand Data AreasOUTPUT – OUT

B

B: Bit

IR, HR, TR

Ladder Symbol Operand Data AreasOUTPUT NOT –
OUT NOT

B

Any output bit can be used in only one instruction that controls its status. See
3-3 Internal Relay (IR) Area for details.

OUT and OUT NOT are used to control the status of the designated bit ac-
cording to the execution condition.

OUT turns ON the designated bit for a ON execution condition, and turns
OFF the designated bit for an OFF execution condition. OUT with a TR bit
appears at a branching point rather than at the end of an instruction line.

OUT NOT turns ON the designated bit for a OFF execution condition, and
turns OFF the designated bit for an ON execution condition.

OUT and OUT NOT can be used to control execution by turning ON and OFF
bits that are assigned to conditions on the ladder diagram, thus determining
execution conditions for other instructions. This is particularly helpful when a
complex set of conditions can be used to control the status of a single work
bit, and then that work bit can be used to control other instructions.

The length of time that a bit is ON or OFF can be controlled by combining the
OUT or OUT NOT with TIM. Refer to Examples under 5-11-1 TIMER – TIM
for details.

There are no flags affected by these instructions.

5-6-2 DIFFERENTIATE UP and DIFFERENTIATE DOWN –
DIFU(13) and DIFD(14)

B: Bit

IR, HR

Ladder Symbol Operand Data Areas

DIFU(13) B

B: Bit

IR, HR

Ladder Symbol Operand Data Areas

DIFD(14) B

Limitations

Description

Flags

Bit Control Instructions Section 5-6

76

Any output bit can be used in only one instruction that controls its status. See
3-3 Internal Relay (IR) Area for details.

DIFU(13) and DIFD(14) are used to turn the designated bit ON for one cycle
only.

Whenever executed, DIFU(13) compares its current execution with the previ-
ous execution condition. If the previous execution condition was OFF and
and current one is ON, DIFU(13) will turn ON the designated bit. If the previ-
ous execution condition was ON and the current execution condition is either
ON or OFF, DIFU(13) will turn the designated bit OFF or do nothing (i.e., if
the designated bit is already OFF). The designated bit will thus never be ON
for longer than one cycle assuming it is executed each cycle (see Precau-
tions, below).

Whenever executed, DIFD(14) compares its current execution with the previ-
ous execution condition. If the previous execution condition was ON and the
current one is OFF, DIFD(14) will turn ON the designated bit. If the previous
execution condition was OFF and the current execution condition is either
ON or OFF, DIFD(14) will turn the designated bit OFF or do nothing (i.e., if
the designated bit is already OFF). The designated bit will thus never be ON
for longer than one cycle.

These instructions are used when a single-cycle execution of a particular in-
struction is desired. Examples of these are shown below.

DIFU(13) and DIFD(14) operation can be tricky when used in programming
between IL and ILC, between JMP and JME, or in subroutines. Refer to 5-7
INTERLOCK and INTERLOCK CLEAR – IL(02) and ILC(03) and 5-8 JUMP
and JUMP END – JMP(04)/JME(05) for details. A total of 48
DIFU(13)/DIFD(14) can be used in a program. If more than 48 are used in a
program only the first 48 will be executed and all others will be ignored.
DIFU(13)/DIFD(14) are useful when used in conjunction with CMP(20) or
MOV(21), see Example below.

There are no flags affected by these instructions.

In diagram A, below, CMP(20) will compare the contents of the two operand
words (HR 1 and DM 00) whenever it is executed with an ON execution con-
dition and set the arithmetic flags (GR, EQ, and LE) accordingly. If the execu-
tion condition remains ON, flag status may be changed each cycle if the con-
tents of one or both operands change. Diagram B, however, shows how
DIFU(13) can be used to ensure that CMP(20) is executed only once each
time the desired execution condition goes ON.

0000

CMP(20)

HR 1

DM 00Diagram A

1000

CMP(20)

HR 1

DM 00Diagram B

DIFU(13) 1000

0000

Address Instruction Operands

0000 LD 0000

0001 CMP(20)

HR 1

DM 00

Address Instruction Operands

0000 LD 0000

0001 DIFU(13) 1000

0002 LD 1000

0003 CMP(20)

HR 1

DM 00

Limitations

Description

Flags

Example

Bit Control Instructions Section 5-6

77

5-6-3 KEEP – KEEP(11)

B: Bit

IR, HR

Ladder Symbol Operand Data Areas
S

R

 KEEP(11)

B

KEEP(11) is used to maintain the status of the designated bit based on two
execution conditions. These execution conditions are labeled S and R. S is
the set input; R, the reset input. KEEP(11) operates like a latching relay that
is set by S and reset by R.

When S turns ON, the designated bit will go ON and stay ON until reset, re-
gardless of whether S stays ON or goes OFF. When R turns ON, the desig-
nated bit will go OFF and stay OFF until reset, regardless of whether R stays
ON or goes OFF. The relationship between execution conditions and
KEEP(11) bit status is shown below.

S execution condition

R execution condition

Status of B

Notice that KEEP(11) operates like a self-maintaining bit. The following two
diagrams would function identically, though the one using KEEP(11) requires
one less instruction to program and would maintain status even in an inter-
locked program section.

0002 0003

0500

0500
Address Instruction Operands

Address Instruction Operands

0000 LD 0002

0001 OR 0500

0002 AND NOT 0003

0003 OUT 0500

0000 LD 0002

0001 LD 0003

0002 KEEP(11) 0500

S

R

 KEEP(11)

0500

0002

0003

There are no flags affected by this instruction.

Description

Flags

Bit Control Instructions Section 5-6

78

Never use an input bit in an normally closed condition on the reset (R) for
KEEP(11) when the input device uses an AC power supply. The delay in
shutting down the PC’s DC power supply (relative to the AC power supply to
the input device) can cause the designated bit of KEEP(11) to be reset. This
situation is shown below.

Input Unit

A

NEVER

S

R

 KEEP(11)

HR 000A

Bits used in KEEP are not reset in interlocks. Refer to the 5-7 INTERLOCK
and INTERLOCK CLEAR – IL(02) and ILC(03) for details.

If a HR bit is used, bit status will be retained even during a power interrup-
tion. KEEP(11) can thus be used to program bits that will maintain status af-
ter restarting the PC following a power interruption. An example of this that
can be used to produce a warning display following a system shutdown for
an emergency situation is shown below. Bits 0002, 0003, and 0004 would be
turned ON to indicate some type of system error. Bit 0005 would be turned
ON to reset the warning display. HR 000, which is turned ON for any of the
three bits which indicates emergency situation, is used to turn ON the warn-
ing indicator through 0500.

HR 000

0500

0002

0003

0004

0005
Reset input

Indicates
emergency
situation

Activates
warning
display

Address Instruction Operands

0000 LD 0002

0001 OR 0003

0002 OR 0004

0003 LD 0005

0004 KEEP(11) HR 000

0005 LD HR 000

0006 OUT 0500

S

R

 KEEP(11)

HR 000

KEEP(11) can also be combined with TIM to produce delays in turning bits
ON and OFF. Refer to 5-11-1 TIMER – TIM for details.

5-7 INTERLOCK and INTERLOCK CLEAR – IL(02) and ILC(03)
Ladder Symbol IL(02)

Ladder Symbol ILC(03)

IL(02) is always used in conjunction with ILC(03) to create interlocks. Inter-
locks are used to enable branching in the same way as can be achieved with
TR bits, but treatment of instructions between IL(02) and ILC(03) differs from
that with TR bits when the execution condition for IL(02) is OFF. If the execu-
tion condition of IL(02) is ON, the program will be executed as written, with
an ON execution condition used to start each instruction line from the point
where IL(02) is located through ILC(03).

Precautions

Example

Description

INTERLOCK and INTERLOCK CLEAR – IL(02) and ILC(03) Section 5-7

79

If the execution condition for IL(02) condition is OFF, the interlocked section
between IL(02) and ILC(03) will be treated as shown in the following table:

Instruction Treatment

OUT and OUT NOT Designated bit turned OFF.

TIM and TIMH(15) Reset.

CNT, CNTR(12) PV maintained.

KEEP(11) Bit status maintained.

DIFU(13) and DIFD(14) Not executed (see below).

All others Not executed.

IL(02) and ILC(03) do not necessarily have to be used in pairs. IL(02) can be
used several times in a row, with each IL(02) creating an interlocked section
through the next ILC(03). ILC(03) cannot be used unless there is at least one
IL(02) between it and any previous ILC(03).

Changes in the execution condition for a DIFU(13) or DIFD(14) are not re-
corded if the DIFU(13) or DIFD(14) is in an interlocked section and the exe-
cution condition for the IL(02) is OFF. When DIFU(13) or DIFD(14) is ex-
ecuted in an interlocked section immediately after the execution condition for
the IL(02) has gone ON, the execution condition for the DIFU(13) or
DIFD(14) will be compared to the execution condition that existed before the
interlock became effective (i.e., before the interlock condition for IL(02) went
OFF). The ladder diagram and bit status changes for this are shown below.
The interlock is in effect while 0000 is OFF. Notice that 1000 is not turned ON
at the point labeled A even though 0001 has turned OFF and then back ON.

0000

IL(02)

DIFU(13) 1000

ILC(03)

0001

0000

0001

ON

OFF

ON

OFF

1000
ON

OFF

A

Address Instruction Operands

0000 LD 0000

0001 IL(02)

0002 LD 0001

0003 DIFU(13) 1000

0004 ILC(03)

There must be an ILC(03) following any one or more IL(02).

Although as many IL(02) as necessary can be used with one ILC(03),
ILC(03) cannot be used consecutively without at least one IL(02) in between,
i.e., nesting is not possible. Whenever a ILC(03) is executed, all interlocks
are cleared.

When more than one IL(02) is used with a single ILC(03), an error message
will appear when the program check is performed, but execution will proceed
normally.

There are no flags affected by these instructions.

DIFU(13) and DIFD(14) in
Interlocks

Precautions

Flags

INTERLOCK and INTERLOCK CLEAR – IL(02) and ILC(03) Section 5-7

80

The following diagram shows IL(02) being used twice with one ILC(03).

0000 LD 0000

0001 IL(02)

0002 LD 0001

0003 TIM 11

0015

0004 LD 0002

0005 IL(02)

0006 LD 0003

0007 AND NOT 0004

0008 LD 0100

0009 CNT 01

10

0010 LD 0005

0011 OUT 0502

0012 ILC(03)

0000

0001

ILC(03)

IL(02)

0004

0005

0003

0002

IL(02)

0502

CP

R

CNT 01

IR 10
0100

Address Instruction Operands

TIM 11

#0015 1.5 s

When the execution condition for the first IL(02) is OFF, TIM 11 will be reset
to 1.5 s, CNT 01 will not be changed, and 0502 will be turned OFF. When the
execution condition for the first IL(02) is ON and the execution condition for
the second IL(02) is OFF, TIM 11 will be executed according to the status of
0001, CNT 01 will not be changed, and 0502 will be turned OFF. When the
execution conditions for both the IL(02) are ON, the program will execute as
written.

5-8 JUMP and JUMP END – JMP(04) and JME(05)

N: Jump number

(00 to 08)

Ladder Symbols Definer Values

JMP(04) N

N: Jump number

(00 to 08)

Ladder Symbols Definer Values

JME(05) N

Jump numbers 01 through 08 may be used only once in JMP(04) and once in
JME(05), i.e., each can be used to define one jump only. Jump number 00
can be used as many times as desired.

JMP(04) is always used in conjunction with JME(05) to create jumps, i.e., to
skip from one point in a ladder diagram to another point. JMP(04) defines the
point from which the jump will be made; JME(05) defines the destination of
the jump. When the execution condition for JMP(04) in ON, no jump is made
and the program is executed as written. When the execution condition for
JMP(04) is OFF, a jump is made to the JME(05) with the same jump number
and the instruction following JME(05) is executed next.

If the jump number for JMP(04) is between 01 and 08, jumps, when made,
will go immediately to JME(05) without executing any instructions in between.
The status of timers, counters, bits used in OUT, bits used in OUT NOT, and
all other status controlled by the instructions between JMP(04) and JMP(05)

Example

Limitations

Description

JUMP and JUMP END – JMP(04) and JME(05) Section 5-8

81

will not be changed. Each of these jump numbers can be used to define one
jump. Because all of instructions between JMP(04) and JME(05) are skipped,
jump numbers 01 through 08 can be used to reduce cycle time.

If the jump number for JMP(04) is 00, the CPU will look for the next JME(05)
with a Jump number of 00. To do so, it must search through the program,
causing a longer cycle time than for other jumps (i.e., longer when the execu-
tion condition is OFF). The status of timers, counters, bits used in OUT, bits
used in OUT NOT, and all other status controlled by the instructions between
JMP(04) 00 and JMP(05) 00 will not be changed. Jump number 00 can be
used as many times as desired. A jump from JMP(04) 00 will always go to
the next JME(05) 00 in the program. It is thus possible to use JMP(04) 00
consecutively and match them all with the same JME(05) 00. It makes no
sense, however, to used JME(05) 00 consecutively, because all jumps made
to them will end at the first JME(05) 00.

Although DIFU(13) and DIFD(14) are designed to turn ON the designated bit
for one cycle, they will not necessarily do so when written between JMP(04)
and JMP (05). Once either DIFU(13) or DIFD(14) has turned ON a bit, it will
remain ON until the next time DIFU(13) or DIFD(14) is executed again. In
normal programming, this means the next cycle. In a jump, it means the next
time the jump from JMP(04) to JME(05) is not made, i.e., if a bit is turned ON
by DIFU(13) or DIFD(14) and then a jump is made that skips the DIFU(13) or
DIFD(14), the designated bit will remain ON until the next time the execution
condition for the JMP(04) controlling the jump is ON.

When JMP(04) and JME(05) are not used in pairs, an error message will ap-
pear when the program check is performed. Although this message also ap-
pears if JMP(04) 00 and JME(05) 00 are not used in pairs, the program will
execute properly as written.

There are no flags affected by these instructions.

5-9 END – END(01)
Ladder Symbol END(01)

END(01) is required as the last instruction in any program. No instruction
written after END(01) will be executed. END(01) can be placed anywhere in
the program to execute all instructions up to that point, as is sometimes done
to debug a program, but it must be removed to execute the remainder of the
program.

If there is no END(01) in the program, no instructions will be executed and
the error message “NO END INST” will appear.

END(01) turns OFF ER, CY, GR, EQ, and LE.

5-10 NO OPERATION – NOP(00)
NOP(00) is not generally required in programming and there is no ladder
symbol for it. When NOP(00) is found in a program, nothing is executed and
the next instruction is moved to. When memory is cleared prior to program-
ming, NOP(00) is written at all addresses. NOP(00) can be input through the
00 function code.

There are no flags affected by NOP(00).

DIFU(13) and DIFD(14)
in Jumps

Precautions

Flags

Description

Flags

Description

Flags

NO OPERATION – NOP(00) Section 5-10

82

5-11 Timer and Counter Instructions

TIM and TIMH are decrementing ON-delay timer instructions which require a
TC number and a set value (SV).

CNT is a decrementing counter instruction and CNTR is a reversible counter
instruction. Both require a TC number and a SV. Both are also connected to
multiple instruction lines which serve as an input signal(s) and a reset.

HDM(61) is used to create a 2-kHz high-speed drum counter; RDM(60) is
used to create a reversible drum counter. RDM(60) cannot be used to create
a high-speed counter. If you require a high-speed counter, use HDM(61).

Any one TC number cannot be defined twice, i.e., once it has been used as
the definer in any of the timer or counter instructions it cannot be used again.
Once defined, TC numbers can be used as many times as required as oper-
ands in instructions other than timer and counter instructions.

TC numbers run from 00 through 47. No prefix is required when using a TC
number as a definer in a timer or counter instruction. Once defined as a tim-
er, a TC number can be prefixed with TIM for use as an operand in certain
instructions. The TIM prefix is used regardless of the timer instruction that
was used to define the timer. Once defined as a counter, a TC number can
be prefixed with CNT for use as an operand in certain instructions. The CNT
is also used regardless of the counter instruction that was used to define the
counter.

TC numbers can be designated for operands that require bit data or for oper-
ands that require word data. When designated as an operand that requires
bit data, the TC number accesses a bit that functions as a “completion flag”
that indicates when the time/count has expired, i.e., the bit, which is normally
OFF, will turn ON when the designated SV has expired. When designated as
an operand that requires word data, the TC number accesses a memory lo-
cation that holds the present value (PV) of the timer or counter. The PV of a
timer or counter can thus be used as an operand in CMP(20) or any other
instruction for which the TC area is allowed by designating the TC number
used to define that timer or counter to access the memory location that holds
the PV.

Note that “TIM 00” is used to designate the Timer instruction defined with TC
number 00, to designate the completion flag for this timer, and to designate
the PV of this timer. The meaning of the term in context should be clear, i.e.,
the first is always an instruction, the second is always a bit operand, and the
third is always a word operand. The same is true of all other TC numbers
prefixed with TIM or CNT. In explanations of ladder diagrams, the completion
flag and PV accessed through a TC number are generally called the comple-
tion flag or the PV of the instruction (e.g., the completion flag of TIM 00 is the
completion flag of TC number 00, which has been defined using TIM).

An SV can be input as a constant or as a word address in a data area. If an
IR area word assigned to an Input Unit is designated as the word address,
the Input Unit can be wired so that the SV can be set externally through
thumbwheel switches or similar devices. Timers and counter wired in this
way can be set externally only during RUN or MONITOR mode. All SVs, in-
cluding those set externally, must be in BCD.

Timer and Counter Instructions Section 5-11

83

5-11-1 TIMER – TIM

N: TC number

(00 through 47)

Ladder Symbol

Definer Values

SV: Set value (word, BCD)

IR, HR, #

Operand Data Areas
TIM N

SV

SV may be between 000.0 and 999.9 seconds. The decimal point of SV is
not input.

Each TC number can be used as the definer in only one timer or counter in-
struction.

TC 00 through TC 47 should not be used in TIM if they are required for
TIMH(15). Refer to 5-11-2 HIGH-SPEED TIMER – TIMH(15) for details.

A timer is activated when its execution condition goes ON and is reset (to
SV) when the execution condition goes OFF. Once activated, TIM measures
in units of 0.1 second from the SV. TIM accuracy is +0.0/-0.1 second.

If the execution condition remains ON long enough for TIM to time down to
zero, the completion flag for the TC number used will turn ON and will remain
ON until TIM is reset (i.e., until its execution condition goes OFF).

The following figure illustrates the relationship between the execution condi-
tion for TIM and the completion flag assigned to it.

Execution condition

Completion flag

ON

OFF

ON

OFF

SV SV

Timers in interlocked program sections are reset when the execution condi-
tion for IL(02) is OFF. Power interruptions also reset timers. If a timer that is
not reset under these conditions is desired, SR area clock pulse bits can be
counted to produce timers using CNT. Refer to 5-11-4 COUNTER – CNT for
details.

Program execution will continue even if a non-BCD SV is used, but timing will
not be accurate.

ER: SV is not in BCD.

Limitations

Description

Precautions

Flags

Timer and Counter Instructions Section 5-11

84

All of the following examples use OUT in diagrams that would generally be
used to control output bits in the IR area. There is no reason, however, why
these diagrams cannot be modified to control execution of other instructions.

The following example shows two timers, one set with a constant and one set
via input word 01. Here, 0200 will be turned ON 15 seconds after 0000 goes
ON and stays ON for at least 15 seconds. When 0000 goes OFF, the timer
will be reset and 0200 will be turned OFF. When 0001 goes ON, TIM 01 is
started from the SV provided through IR word 01. Bit 0201 is also turned ON
when 0001 goes ON. When the SV in 01 has expired, 0201 is turned OFF.
This bit will also be turned OFF when TIM 01 is reset, regardless of whether
or not SV has expired.

0000

TIM 00

0001

TIM 01

0200

0201

Address Instruction Operands

0000 LD 0000

0001 TIM 00

0150

0002 LD TIM 00

0003 OUT 0200

0004 LD 0001

0005 TIM 01

01

0006 AND NOT TIM 01

0007 OUT 0201

TIM 00

#0150

TIM 01

01

Timers operating longer than 999.9 seconds can be formed in two ways. One
is by programming consecutive timers, with the completion flag of each timer
used to activate the next timer. A simple example with two 900.0-second
(15-minute) timers combined to functionally form a 30-minute timer.

0000

TIM 01

TIM 02

0200

Address Instruction Operands

0000 LD 0000

0001 TIM 01

9000

0002 LD TIM 01

0003 TIM 02

9000

0004 LD TIM 02

0005 OUT 0200

TIM 01

#9000

TIM 02

#9000

900.0 s

900.0 s

In this example, 0200 will be turned ON 30 minutes after 0000 goes ON.

TIM can also be combined with CNT or CNT can be used to count SR area
clock pulse bits to produce longer timers. An example is provided in 5-11-4
COUNTER – CNT.

TIM can be combined with KEEP(11) to delay turning a bit ON and OFF in
reference to a desired execution condition. KEEP(11) is described in 5-6-3
KEEP – KEEP(11).

To create delays, the completion flags for two timers are used to determine
the execution conditions for setting and resetting the bit designated for
KEEP(11). The bit whose manipulation is to be delayed is used in KEEP(11).
Turning ON and OFF the bit designated for KEEP(11) is thus delayed by the
SV for the two timers. The two SV could naturally be the same if desired.

Examples

Example 1:
Basic Application

Example 2:
Extended Timers

Example 3:
ON/OFF Delays

Timer and Counter Instructions Section 5-11

85

In the following example, 0500 would be turned ON 5.0 seconds after 0000
goes ON and then turned OFF 3.0 seconds after 0000 goes OFF. It is neces-
sary to use both 0500 and 0000 to determine the execution condition for TIM
02; 0000 in an normally closed condition is necessary to reset TIM 02 when
0000 goes ON and 0500 is necessary to activate TIM 02 when 0000 goes
OFF, setting 0500 by resetting TIM 01.

0000

0500 0000

TIM 01

TIM 02

0000

0500

5.0 s 3.0 s

Address Instruction Operands

0000 LD 0000

0001 TIM 01

0050

0002 LD 0500

0003 AND NOT 0000

0004 TIM 02

0030

0005 LD TIM 01

0006 LD TIM 02

0007 KEEP(11) 0500

TIM 01

#0050

TIM 02

#0030

S

R

 KEEP(11)

0500

5.0 s

3.0 s

The length of time that a bit is kept ON or OFF can be controlled by combin-
ing TIM with OUT or OUT NOT. The following diagram demonstrates how
this is possible. In this example, 0204 would remain ON for 1.5 seconds after
0000 goes ON regardless of the time 0000 stays ON. This is achieved by
using 1000, activated by 0000, to turn ON 0204. When TIM 01 comes ON
(i.e., when the SV of TIM 01 has expired), 0204 will be turned OFF through
TIM 01 (i.e., TIM 01 will turn ON for an normally closed condition, creating an
OFF execution condition for OUT 0204). TIM 01 will also turn OFF 1000 the
next cycle, resetting the one-shot.

0000

TIM 011000

1000

1000 TIM 01

1000

0204

0000

0204

1.5 s 1.5 s

Address Instruction Operands

0000 LD 1000

0001 AND NOT TIM 01

0002 OR 0000

0003 OUT 1000

0004 LD 1000

0005 TIM 01

0015

0006 LD 1000

0007 AND NOT TIM 01

0008 OUT 0204

TIM 01

#0015 1.5 s

Example 4:
One-shot Bits

Timer and Counter Instructions Section 5-11

86

Bits can be programmed to turn ON and OFF at a regular interval while a
designated execution condition is ON by using TIM twice. One TIM functions
to turn ON and OFF a specified bit, i.e., the completion flag of this TIM turns
the specified bit ON and OFF. The other TIM functions to control the opera-
tion of the first TIM, i.e., when the first TIM’s completion flag goes ON, the
second TIM is started and when the second TIM’s completion flag goes ON,
the first TIM is started.

0000 TIM 02

TIM 01

TIM 01
0205

0000

0205

1.5 s1.0 s 1.5 s1.0 s

Address Instruction Operands

0000 LD 0000

0001 AND TIM 02

0002 TIM 01

0010

0003 LD TIM 01

0004 TIM 02

0015

0005 LD TIM 01

0006 OUT 0205

TIM 02

#0015

TIM 01

#0010 1.0 s

1.5 s

An easier but more limited method of creating a flicker bit is to AND one of
the SR area clock pulse bits with the execution condition that is to be ON
when the flicker bit is operating. Although this method does not use TIM, it is
included here for comparison. This method is more limited because the ON
and OFF times must be the same and they depend on the clock pulse bits
available in the SR area.

5-11-2 HIGH-SPEED TIMER – TIMH(15)

N: TC number

(00 though 47)

Ladder Symbol

Definer Values

SV: Set value (word, BCD)

IR, HR, #

Operand Data Areas

TIMH(15) N

SV

SV may be between 00.02 and 99.99 seconds. (Actually settings of 00.00
and 00.01 are allowed, but 00.00 is meaningless and 00.01 is not reliable.)
The decimal point of SV is not input.

Each TC number can be used as the definer in only one timer or counter in-
struction.

A cycle time of greater than 10 ms will affect the accuracy of the timer.

TIMH(15) operates the same as TIM except that TIMH measures in units of
0.01 second.

Refer to 5-11-1 TIMER – TIM for operational details and examples. All as-
pects except for the above considerations are the same.

Example 5:
Flicker Bits

Limitations

Description

Timer and Counter Instructions Section 5-11

87

Timers in interlocked program sections are reset when the execution condi-
tion for IL(02) is OFF. Power interruptions also reset timers. If a timer that is
not reset under these conditions is desired, SR area clock pulse bits can be
counted to produce timers using CNT. Refer to 5-11-4 COUNTER – CNT for
details.

Program execution will continue even if a non-BCD SV is used, but timing will
not be accurate.

ER: SV is not in BCD.

5-11-3 Analog Timer Unit
The Analog Timer Unit uses two I/O words to provide four timers (T0 to T3).
Each of the four timers may be set to a specific timer value (SV) within one of
four ranges. The SV for each timer may be set using either a variable resistor
on the Analog Timer Unit or from an external variable resistor.

Each timer is allocated five bits within the IR words allocated to the Analog
Timer Units. The function of these is shown below. The words shown in the
table are as seen from the CPU, i.e., the input word goes from the Analog
Timer Unit to the CPU, the output word, from the CPU to the Analog Timer
Unit. The CPU receives the Time Expired flag from the Unit and sends the
Start control bit Pause control bit and Range bits to the Unit.

Bit Input word Output word

00 T0 Time Expired flag T0 Start control bit

01 T1 Time Expired flag T1 Start control bit

02 T2 Time Expired flag T2 Start control bit

03 T3 Time Expired flag T3 Start control bit

04 T0 Pause control bit
05 T1 Pause control bit

06 T2 Pause control bit

07 T3 Pause control bit

08 T0 Range bits

09 Cannot be used.

10 T1 Range bits

11

12 T2 Range bits

13

14 T3 Range bits

15

There is a SET indicator and a time expired indicator on the Analog Timer
Unit for each timer. These indicators are lit when the corresponding timer’s
Start control bit or Time Expired flag is ON.

When the Start control bit is turned ON, the timer begins operation and the
SET indicator is lit.

When the time set with the internal or external adjustment has expired, the
corresponding Time Expired flag is set. The time up indicator also lights.

If the Pause control bit for a timer is turned ON from the PC, the timer will
cease timing and the present value (PV) will be retained. Timing will resume
when the Pause control bit is turned OFF. If the Start control bit is turned
OFF before the set value (SV) of the timer has expired, the Time Expired flag
will not be turned ON.

Precautions

Flags

Timer and Counter Instructions Section 5-11

88

Timer ranges are set in the output words as shown in the following table.

Timer Output
word bit

0.1 to 1s 1 to 10s 10 to 60s 1 to 10m

T0 08 OFF ON OFF ON

09 OFF OFF ON ON

T1 10 OFF ON OFF ON

11 OFF OFF ON ON

T2 12 OFF ON OFF ON

13 OFF OFF ON ON

T3 14 OFF ON OFF ON

15 OFF ON OFF ON

Example

This example uses an Analog Timer Unit connected to a C28K CPU. Word
allocations are shown in the following table.

Unit Input word Output word

CPU 00 01

Analog Timer Unit 02 03

All four time’s are used. Times for two of them are adjusted on the variable
resistors provided on the Analog Timer Unit. The other two times are ad-
justed using external resistors. These adjustments are made as follows. Re-
fer to the Analog Timer Unit Installation Guide for hardware details.

Timer SV Range Resistor adjustment

T0 Approx. 0.6 s 0.1 to 1 s 6/10th turn clockwise

T1 Approx. 3 s 1 to 10 s 3/10th turn clockwise

T2 Approx. 2.6 s 10 to 60 s 2/10th turn clockwise

T3 Approx. 8 min 1 to 10 min 8/10th turn clockwise

The following program sections are used to set up the required data and pro-
duce outputs from the four timers. The first section moves E400 into IR 06 to
set the desired ranges (see table above). The second program section
achieves the following operation.

1, 2, 3... 1. IR 0500 is turned ON approximately 0.6 seconds after IR 0002 turns ON
as the result of the action of T0.

2. IR 0501 is turned ON approximately 3 seconds after IR 0003 turns ON
as the result of the action of T1.

3. IR 0502 is turned ON approximately 20 seconds after IR 0004 turns ON
as the result of the action of T2.

4. IR 0503 is turned ON approximately 8 minutes after IR 0004 turns ON
as the result of the action of T3.

Setup

Programming

Timer and Counter Instructions Section 5-11

89

5. T2 and T3 are made inoperative if IR 0015 is turned ON.

MOV(21)

#0400

06

First Cycle Flag

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0

Content of IR O6 after MOV(21)

Range settings

1815 Address Instruction Operands

0000 LD 1815

0001 MOV(21)

0400

06

0606

0015

0607

0600

0002

0500

0100

0601

0003

0501

0101

0502

0102

0503

0103

0602

0004

0603

Used to inhibit operation of T2 and T3.

T0 started.

0500 turned ON when time for T0 expires.

T1 started.

0501 turned ON when time for T1 expires.

T2 and T3 started.

0502 turned ON when time for T2 expires.

0502 turned ON when time for T3 expires.

T0 Time Expired
Flag

T0 Start Control Bit

T1 Time Expired
Flag

T2 Time Expired
Flag

T3 Time Expired
Flag

T1 Start Control Bit

T2 Start Control Bit

T3 Start Control Bit

Address Instruction Operands

0000 LD 0015

0001 OUT 0606

0002 OUT 0607

0003 LD 0002

0004 OUT 0600

0005 LD 0100

0006 OUT 0500

0007 LD 0003

0008 OUT 0601

0009 LD 0101

0010 OUT 0501

0011 LD 0004

0012 OUT 0602

0013 OUT 0603

0014 LD 0102

0015 OUT 0502

0016 LD 0103

0017 OUT 0503

Timer and Counter Instructions Section 5-11

90

5-11-4 COUNTER – CNT

N: TC number

(00 through 47)

Ladder Symbol

Definer Values

SV: Set value (word, BCD)

IR, HR, #

Operand Data Areas

CP

R

CNT N

SV

Each TC number can be used as the definer in only one timer or counter in-
struction.

CNT is used to count down from SV when the execution condition on the
count pulse, CP, goes from OFF to ON, i.e., the present value (PV) will be
decremented by one whenever CNT is executed with an ON execution condi-
tion for CP and the execution condition was OFF for the last execution. If the
execution condition has not changed or has changed from ON to OFF, the
PV of CNT will not be changed. Counter is turned ON when the PV reaches
zero and will remain ON until the counter is reset.

CNT is reset with a reset input, R. When R goes from OFF to ON, the PV is
reset to SV. The PV will not be decremented while R is ON. Counting down
from SV will begin again when R goes OFF. The PV for CNT will not be reset
in interlocked program sections or for power interruptions.

Changes in execution conditions, the completion flag, and the PV are illus-
trated below. PV line height is meant to indicate changes in the PV only.

Execution condition
on count pulse (CP)

Execution condition
on reset (R)

ON

OFF

ON

OFF

Completion flag
ON

OFF

PV
SV

SV - 1

SV - 2

0002

0001

0000

SV

Program execution will continue even if a non-BCD SV is used, but the SV
will not be correct.

ER: SV is not in BCD.

Limitations

Description

Precautions

Flags

Timer and Counter Instructions Section 5-11

91

In the following example, the PV will be decremented whenever both 0000
and 0001 are ON provided that 0002 is OFF and either 0000 or 0001 was
OFF the last time CNT 04 was executed. When 150 pulses have been
counted down (i.e., when PV reaches zero), 0205 will be turned ON.

0000
CP

R

CNT 04

#0150
0002

0001

0205

CNT 04

Address Instruction Operands

0000 LD 0000

0001 AND 0001

0002 LD 0002

0003 CNT 04

0150

0004 LD CNT 04

0005 OUT 0205

Here, 0000 can be used to control when CNT is operative and 0001 can be
used as the bit whose OFF to ON changes are being counted.

The above CNT can be modified to restart from SV each time power is
turned ON to the PC. This is done by using the First Cycle flag in the SR area
(1815) to reset CNT as shown below.

0000
CP

R

CNT 04

#0150
0002

0001

0205

CNT 04

1815

Address Instruction Operands

0000 LD 0000

0001 AND 0001

0002 LD 0002

0003 OR 1815

0004 CNT 04

0150

0005 LD CNT 04

0006 OUT 0205

Counters that can count past 9,999 can be programmed by using one CNT to
count the number of times another CNT has reached zero from SV.

In the following example, 0000 is used to control when CNT 01 operates and
CNT 01, when 0000 is ON, counts down the number of OFF to ON changes
in 0001. CNT 01 is reset by its completion flag, i.e., it starts counting again as
soon as its PV reaches zero. CNT 02 counts the number of times the com-
pletion flag for CNT 01 goes ON. Bit 0002 serves as a reset for the entire
extended counter, resetting both CNT 01 and CNT 02 when it is OFF. The
completion flag for CNT 02 is also used to reset CNT 01 to inhibit CNT 01
operation once PV for CNT 02 has been reached until the entire extended
counter is reset via 0002.

Example 1:
Basic Application

Example 2:
Extended Counter

Timer and Counter Instructions Section 5-11

92

Because in this example the SV for CNT 01 is 100 and the SV for CNT 02 is
200, the completion flag for CNT 02 turns ON when 100 x 200 or 20,000 OFF
to ON changes have been counted in 0001. This would result in 0203 being
turned ON.

0203

CP

R

CNT 01

#0100

CP

R

CNT 02

#0200

CNT 01

0002

CNT 02

0000 0001

0002

CNT 01

CNT 02

Address Instruction Operands

0000 LD 0000

0001 AND 0001

0002 LD NOT 0002

0003 OR CNT 01

0004 OR CNT 02

0005 CNT 01

0100

0006 LD CNT 01

0007 LD NOT 0002

0008 CNT 02

0200

0009 LD CNT 02

0010 OUT 0203

CNT can be used in sequence as many times as required to produce count-
ers capable of counting down even higher values.

CNT can be used to create extended timers in two ways: by combining TIM
with CNT and by counting SR area clock pulse bits.

In the following example, CNT 02 counts the number of times TIM 01
reaches zero from its SV. The completion flag for TIM 01 is used to reset TIM
01 so that is runs continuously and CNT 02 counts the number of times the
completion flag for TIM 01 goes ON (CNT 02 would be executed once each
time between when the completion flag for TIM 01 goes ON and TIM 01 is
reset by its completion flag). TIM 01 is also reset by the completion flag for
CNT 02 so that the extended timer would not start again until CNT 02 was
reset by 0001, which serves as the reset for the entire extended timer.

As the SV for TIM 01 is 5.0 seconds and the SV for CNT 02 is 100, the com-
pletion flag for CNT 02 turns ON when 5 seconds x 100 times, or 8 minutes
and 20 seconds have expired. This would result in 0201 being turned ON.

0000 TIM 01 CNT 02

TIM 01

0001

CNT 02

0200

CP

R

CNT 02

#0100

Address Instruction Operands

0000 LD 0000

0001 AND NOT TIM 01

0002 AND NOT CNT 02

0003 TIM 01

0050

0004 LD TIM 01

0005 LD 0001

0006 CNT 02

0100

0007 LD CNT 02

0008 OUT 0200

TIM 01

#0050

In the following example, CNT 01 counts the number of times the 1-second
clock pulse bit (1902) goes from OFF to ON. Here again, 0000 is used to
control when CNT is operating.

Example 3:
Extended Timers

Timer and Counter Instructions Section 5-11

!

93

As the SV for CNT 01 is 700, the completion flag for CNT 02 turns ON when
1 second x 700 times, or 10 minutes and 40 seconds have expired. This
would result in 0202 being turned ON.

CP

R

CNT 01

#0700

0000 1902

0001

CNT 01
0202

Address Instruction Operands

0000 LD 0000

0001 AND 1902

0002 LD NOT 0001

0003 CNT 01

0700

0004 LD CNT 01

0005 OUT 0202

Caution The shorter clock pulses may not produce accurate timers because their short
ON times may not be read accurately for longer cycle times. In particular the
0.02-second and 0.1-second clock pulses should not be used to create timers
with CNT.

5-11-5 REVERSIBLE COUNTER – CNTR(12)

N: TC number

(00 through 47)

Ladder Symbol

Definer Values

SV: Set value (word, BCD)

IR, HR, #

Operand Data Areas

II

DI
CNTR(12)

N

SVR

Each TC number can be used as the definer in only one timer or counter in-
struction.

The CNTR(12) is a reversible, up-down circular counter, i.e., it is used to
count between zero and SV according to changes in two execution condi-
tions, those in the increment input (II) and those in the decrement input (DI).

The present value (PV) will be incremented by one whenever CNTR(12) is
executed with an ON execution condition for II and the execution condition
was OFF for II for the last execution. The present value (PV) will be decre-
mented by one whenever CNTR(12) is executed with an ON execution condi-
tion for DI and the execution condition was OFF for DI for the last execution.
If OFF to ON changes have occurred in both II and DI since the last execu-
tion, the PV will not be changed.

If the execution conditions have not changed or has changed from ON to
OFF for both II and DI, the PV of CNT will not be changed.

When decremented from 0000, the present value is set to SV and the com-
pletion flag is turned ON until the PV is decremented again. When incre-
mented past the SV, the PV is set to 0000 and the completion flag is turned
ON until the PV is incremented again.

Limitations

Description

Timer and Counter Instructions Section 5-11

94

CNTR(12) is reset with a reset input, R. When R goes from OFF to ON, the
PV is reset to zero. The PV will not be incremented or decremented while R
is ON. Counting will begin again when R goes OFF. The PV for CNTR(12)
will not be reset in interlocked program sections or for power interruptions.

Changes in II and DI execution conditions, the completion flag, and the PV
are illustrated below starting from part way through CNTR(12) operation (i.e.,
when reset, counting begins from zero). PV line height is meant to indicate
changes in the PV only.

Execution condition
on increment (II)

Execution condition
on decrement (DI)

ON

OFF

ON

OFF

Completion flag
ON

OFF

PV
SV

SV - 1

SV - 2
0001

0000 0000

SV

SV - 1

SV - 2

Program execution will continue even if a non-BCD SV is used, but the SV
will not be correct.

ER: SV is not in BCD.

5-11-6 HIGH-SPEED DRUM COUNTER – HDM(61)

N: TC number

Must be 47

Ladder Symbol

Definer Values

R: Result word

IR, HR, DM

Operand Data Areas

HDM(61) N

R

If any of the lower limits for the DM ranges are set to “0000,” the correspond-
ing output bits are turned ON when the high-speed counter is reset.

If the time it takes to count through some range is less than the cycle time of
the CPU, the high-speed counter may count past between cycles and thus
the output bit for this range may not be turned ON.

Counting
Time

Lower Limit Upper Limit

The count signal must be at least 250 µs (2 kHz) wide and have a duty factor
of 1:1, as shown below.

250 µS 250 µS

Input
0000

Precautions

Flags

Limitations

Timer and Counter Instructions Section 5-11

95

In the hard reset mode, the reset signal must have an ON time of at least
250 µs.

250 µs max.

Input
0001

Description

The high-speed counter counts the signals input from an external device con-
nected to input 0000 and, when the high-speed counter instruction is ex-
ecuted, compares the current value with a set of ranges which have been
preset in DM words 32 through 63. If the current value is within any of the
preset ranges, the corresponding bit of a specified result word is turned ON.
The bit in the result word remains ON until the current value is no longer
within the specified range.

An internal buffer is incremented whenever bit 0000 goes from OFF to ON.
When the high-speed counter instruction is executed, the value in the count-
er buffer is transferred to counter 47 which serves as the count value storage
area.

When using the high-speed counter, the following bits are reserved and can-
not be used for any other purpose:

• Input 0000 (count input)

• Input 0001 (hard reset)

• SR bit 1807 (soft reset)

• TC 47 (present count value)

• DM 32 to 63 (upper and lower limits)

Note If a power failure occurs, the count value of the high speed counter immedi-
ately before the power failure is retained.

The high-speed counter is programmed differently depending on how it is to
be reset. Two resetting modes are possible: hard-reset and soft-reset. The
hard reset is made effective or ineffective with the DIP switch in the CPU.

To use the hard reset, turn pins 7 and 8 ON. In this mode, input 0001 is the
reset input. When it is turned ON, the present value in the high-speed count-
er buffer is reset to “0000.” When the reset is ON, the count signal from input
0000 is not accepted. When programmed with the hard reset, the high-speed
counter would appear as below.

0002
HDM(61) 47

10

Address Instruction Operands

0000 LD 0002

0001 HDM(61) 47

10

General

Hard Reset

Timer and Counter Instructions Section 5-11

96

SR bit 1807 is the soft reset. When it is turned ON, the present value in the
high-speed counter buffer is reset to “0000.” As for the hard reset, when the
soft reset is ON, the count signal from input 0000 is not accepted. When pro-
grammed with the soft reset, the high-speed counter would appear as below.
Note that when the soft reset is used, the timing at which the counter buffer is
reset may be delayed due to the cycle time of the CPU.

0003

0002

1807

HDM(61) 47

10

Address Instruction Operands

00000 LD 0003

00001 OUT 1807

00002 LD 0002

00003 HDM(61) 47

10

If required, both the hard reset and the soft reset can be used together.

The following table shows the upper and lower limits that need to be set in
DM 32 through DM 63. In this table, “S” denotes the present value of counter
47 and R is the results word.

Lower
limit

Upper
limit

Present value of the counter Bit of R
that turns

ON

DM 32 DM 33 Value of DM 32 ≤ S ≤ value of DM 33 00

DM 34 DM 35 Value of DM 34 ≤ S ≤ value of DM 35 01

DM 36 DM 37 Value of DM 36 ≤ S ≤ value of DM 37 02

DM 38 DM 39 Value of DM 38 ≤ S ≤ value of DM 39 03

DM 40 DM 41 Value of DM 40 ≤ S ≤ value of DM 41 04

DM 42 DM 43 Value of DM 42 ≤ S ≤ value of DM 43 05

DM 44 DM 45 Value of DM 44 ≤ S ≤ value of DM 45 06

DM 46 DM 47 Value of DM 46 ≤ S ≤ value of DM 47 07

DM 48 DM 49 Value of DM 48 ≤ S ≤ value of DM 49 08

DM 50 DM 51 Value of DM 50 ≤ S ≤ value of DM 51 09

DM 52 DM 53 Value of DM 52 ≤ S ≤ value of DM 53 10

DM 54 DM 55 Value of DM 54 ≤ S ≤ value of DM 55 11

DM 56 DM 57 Value of DM 56 ≤ S ≤ value of DM 57 12

DM 58 DM 59 Value of DM 58 ≤ S ≤ value of DM 59 13

DM 60 DM 61 Value of DM 60 ≤ S ≤ value of DM 61 14

DM 62 DM 63 Value of DM 62 ≤ S ≤ value of DM 63 15

Soft Reset

Upper and Lower Limit
Setting

Timer and Counter Instructions Section 5-11

97

The values must be four-digit BCD in the range 0000 to 9999. Note that fail-
ure to enter BCD values will not activate the ERR flag. Always set a lower
limit which is less than the corresponding upper limit. MOV is useful in setting
limits. The following ladder diagram shows the use of MOV for setting limits
and the associated timing diagram shows the state of the relevant bits of the
result word (IR 05) as the counter is incremented.

0000 LD 1813

0001 MOV(21)

0200

DM 32

0002 MOV(21)

1500

DM 33

0003 MOV(21)

0600

DM 34

0004 MOV(21)

2000

DM 35

0005 LD 0002

0006 HDM(61) 47

05

1813 (normally ON)

0002 (start input)

MOV(21)

#0200

DM 32

MOV(21)

#1500

DM 33

MOV(21)

#0600

DM 34

MOV(21)

#2000

DM 35

HDM(61) 47

05

Transfers
preset
value to
DM 32 to
35

Corresponding
result word is 05

Start input 0002

Output 0500

Output 0501

Count input 0000

200

600

1500

2000

Address Instruction Operands

The maximum response speed of the high-speed counter hardware is 2 kHz.
Note however that the start signal, reset signal (in the case of soft reset), and
corresponding outputs are all processed by software. Because of this, re-
sponse may be delayed by the cycle time.

When programming the high-speed counter with the GPC, “00” is displayed
on each of the three lines below the instruction code (HDM(61)). Do not alter
the second and third lines; if they are not “00,” an error occurs when an at-
tempt is made to transfer the program from the GPC to the PC.

Do not program the high-speed counter between JMP and JME. The
high-speed counter can be programmed between IL and ILC. However, the
hard reset signal remains active, causing the corresponding output(s) to turn
ON or OFF, even when the IL condition is OFF.

Response Speed

Precautions

Timer and Counter Instructions Section 5-11

98

Examples

The high-speed counter normally provides 16 output bits. If more than 16 are
required, the high-speed counter may be programmed more than once. In
the following program example, the high-speed counter is used twice to pro-
vide 32 output bits.

1813 (normally ON)

0002

MOV(21)

“S1”

DM 32

MOV(21)

“S2”

DM 33

MOV(21)

“S32”

DM 35

HDM(61) 47

HR 0

Transfers limit values
S1 to S32 to DM.
Output thru HR 0

A

1813 (normally ON)

0002

MOV(21)

Transfers limit values
S33 to S64 to DM.
Output thru HR 1

B

“S33”

DM 32

MOV(21)

“S34”

DM 33

MOV(21)

“S64”

DM 35

HDM(61) 47

HR 1

Address Instruction Operands

0000 LD 1813

0001 MOV(21)

“S1”

DM 32

0002 MOV(21)

“S2”

DM 33

0003 MOV(21)

“S32”

DM 35

0004 LD 0002

0005 HDM(61) 47

HR 0

0006 LD 1813

0007 MOV(21)

“S33”

DM 32

0008 MOV(21)

“S34”

DM 33

0009 MOV(21)

“S64”

DM 35

0010 LD 0002

0011 HDM(61) 47

HR 1

In this program, each bit in the specified words, HR 0 and HR 1 are turned
ON under the following conditions (where S is the present count value of the
high-speed counter stored as the data of CNT 47):
Where S1 ≤ S ≤ S2, HR 000 is ON.
Where S3 ≤ S ≤ S4, HR 001 is ON.
Where S31 ≤ S ≤ S32, HR 015 is ON.
Where S33 ≤ S ≤ S34, HR 100 is ON.
Where S63 ≤ S ≤ S64, HR 115 is ON.

Extending the Counter

Timer and Counter Instructions Section 5-11

99

Note that in the program just mentioned, the present value in the counter
buffer is transferred to counter number 47 at points A and B. In this case, if
S31 (=1,000) < S < S32 (=2,000) and S33 (=2,000) < S < S34 (=3,000), and
if the present count value of the first high-speed counter (at point A) is 1,999
and that of the second counter (at point B) is 2,003, HR 015 and HR100 may
be simultaneously turned ON. If it is necessary to avoid this, set the values of
S32 and S33 so that there is a value difference equivalent to the time lag
from points A to B. For example, set the value of S32 to 2,000 and that of
S33 to 2,010.

More than 16 output bits may be obtained using CMP.

1813 (normally ON)

1905 (GR)
0600

CMP(20)

CNT 47

#6850

Address Instruction Operands

0000 LD 1813

0001 CMP(20)

CNT 47

6850

0002 AND 1905

0003 OUT 0600

In the above program, output 0600 is turned ON when the following condition
is satisfied, where S is the present count value of the high-speed counter:
6,850 < S ≤ 9,999.

1813 (normally ON)

1905 (GR)
1000

CMP(20)

CNT 47

#0300

1813 (normally ON)

1907 (LE)
1001

CMP(20)

CNT 47

#2300

1000 1001
0601

Address Instruction Operands

0000 LD 1813

0001 CMP(20)

CNT 47

0300

0002 AND 1905

0003 OUT 1000

0004 LD 1813

0005 CMP(20)

CNT 47

2300

0006 AND 1907

0007 OUT 1001

0008 LD 1000

0009 AND 1001

0010 OUT 0601

In the above program, output 0601 is turned ON when the following condition
is satisfied, where S is the present count value of the high-speed counter:
300 < S < 2,300.

The number of digits of the upper and lower limits of the high-speed counter
can be increased from four to eight by using the high-speed counter together
with CNTR and CMP.

Cascade Connection
(Counting Past 9,999)

Timer and Counter Instructions Section 5-11

100

The high-speed counter is a ring counter and thus when its present count
value is incremented from 9999 to 0000, the completion flag of CNT 47 is
turned ON for one cycle. By using this flag as an input to the UP input of the
reversible counter (i.e., cascade connection) you can increase the number of
digits to eight. Although an ordinary counter can be cascade-connected to
the high-speed counter, programming is easier with CNTR since an ordinary
counter is decrementing.

II

DI

R

1813 (normally ON)

0002 (start input)

MOV(21)

#0000

DM 32

MOV(21)

#5000

DM 33

HDM(61) 47

HR 0

1813 (normally ON)

1906 (EQ)
0500

CMP(20)

CNT 46

#0002

CNT 47

1814 (normally OFF)

1810 (turns On for 1 cycle upon hard reset)

CNTR(12)
46

#9999

HR 000

Address Instruction Operands

0000 LD 1813

0001 MOV(21)

0000

DM 32

0002 MOV(21)

5000

DM 33

0003 LD 0002

0004 HDM(61) 47

HR 0

0005 LD CNT 47

0006 LD 1814

0007 LD 1810

0008 CNTR(12)

46

9999

0009 LD 1813

0010 CMP(20)

CNT 46

0002

0011 AND 1906

0012 AND HR 000

0013 OUT 0500

In the above program example, output 0500 is turned ON when the following
condition is satisfied (where S is the present count value of the high-speed
counter):
20,000 ≤ S ≤ 25,000.

In hard reset mode, program SR 1810, which turns ON for one cycle time
upon input of the hard reset signal, to CNTR as the reset input. Unless CNTR
and CMP are programmed immediately after the high-speed counter, the cor-
rect corresponding outputs may not be produced.

The high-speed counter is very useful in the following application. Here,
packages are being carried on a conveyor belt at random intervals. Some of
them are spaced far apart and others are clustered together, making it im-
possible to accurately detect and count them with photoelectric switches
alone.

By presetting the number of pulses generated when a single package is de-
tected and by counting those pulses, the number of packages can be accu-
rately counted, regardless of whether the packages are spaced or clustered.

Note

Packaging Machine

Timer and Counter Instructions Section 5-11

101

The following diagram shows the packaging system and the corresponding
timing chart.

Pusher

Packages

Rotary encoder E6A
(0000)

Reflective photoelectric
switch PH1 (0002)

Motor 2 (M2)
Rear limit switch for
pusher LS1 (0003)

Fixed stopper

Front limit switch for
pusher LS2 (0004)

Upper limit switch for stopper LS3 (0005)

Moving stopper

Lower limit switch for stopper LS4 (0006)Motor 1 (M1)

PH1
(0002)

E6A
(0000)

M1 rise
(0100)

LS4
(0006)

LS3
(0005)
 M2
forward
(0102)
LS2
(0004)

LS1
(0003)
M2
backward
(0103)
M1 fall
(0101)

In this example, “x” is the number of pulses per package. To detect four pack-
ages therefore, 4x must be set as the preset value of the high-speed counter.

Timer and Counter Instructions Section 5-11

102

Here is the program example for the application.

MOV(21)

#0905

DM 32

MOV(21)

#1150

DM 33

MOV(21)

#1450

DM 34

MOV(21)

#1550

DM 35

1815
1807

HDM(61) 47

HR 0

HR 000 0011 0006 0005
0100

0005 0003 0100 0004
0102

0004 0102 0003
0103

1000 0005 0006
0101

DIFU(13) 1000

0005

0002

1813 (normally ON)

HR 001

0102

0103

0003

0101

0011

0100

Transfer limit values

Resets counter
upon power
application or at
stopper
operation

Counts pulses
from encoder
only when PH1
is ON

Normally counts 4
packages. When
input 0011 is ON,
counts 6 packages.
Pushes stopper up
at count-up to stop
following packages

Pushes
packages
out

Returns pusher
to original
position after
operation

Pushes stopper
down and
continues
operating when
pusher returns
to original
position

Timer and Counter Instructions Section 5-11

103

0000 LD 1813

0001 MOV(21)

0905

DM 32

0002 MOV(21)

1150

DM 33

0003 MOV(21)

1450

DM 34

0004 MOV(21)

1550

DM 35

0005 LD 1815

0006 OR 0005

0007 OUT 1807

0008 LD 0002

0009 HDM(61) 47

HR 0

0010 LD HR 000

0011 AND NOT 0011

0012 LD HR 001

0013 AND 0011

0014 OR LD

0015 AND 0006

0016 OR 0100

0017 AND NOT 0005

0018 OUT 0100

0019 LD 0005

0020 AND 0003

0021 OR 0102

0022 AND NOT 0100

0023 AND NOT 0004

0024 OUT 0102

0025 LD 0004

0026 AND NOT 0102

0027 OR 0103

0028 AND NOT 0003

0029 OUT 0103

0030 LD 0003

0031 DIFU(13) 1000

0032 LD 1000

0033 AND 0005

0034 OR 0101

0035 AND NOT 0006

0036 OUT 0101

Address Instruction Operands Address Instruction Operands

5-11-7 REVERSIBLE DRUM COUNTER – RDM(60)

N: TC number

Must be 46

Ladder Symbol

Definer Values

R: Result word

IR, HR, DM

Operand Data Areas

RDM(60) N

R

If any of the lower limits for the DM ranges are set to “0000,” the correspond-
ing output bits are turned ON when the counter is reset.

The reversible drum counter is a ring counter with a counting range of 0000
to 9999. It requires three input signals to operate: a count input, reset input,
and UP/DOWN selection input. For these inputs, SR bits 1804 to 1806 are
reserved and cannot be used for any other purpose while the RDM(60) is
being used.

Operation is enabled when RDM(60) is executed with an ON execution con-
dition. RDM(60) increments when the UP/DOWN selection input (1806) is
OFF. When this input is ON, RDM(60) decrements. Incrementing or decre-
menting occurs on the rising edge of the count input signal. When RDM(60)
is executed by the CPU, the value in the counter buffer is transferred to CNT
46.

Limitations

Description

Timer and Counter Instructions Section 5-11

104

The transferred count value is then compared with the upper and lower limits
of a set of ranges which have been preset in DM 00 through DM 31. If the
current value is within any of the preset ranges, the corresponding bit of the
results word, R, is turned ON. The bit in the result word will remain ON until
the current value is no longer within the specified range.

When the reset input (1804) goes ON, the present value is cleared to 0000,
even if the start input is OFF, and all bits in R are set.

Note RDM(60) cannot be used to create a high-speed counter. If you require a
high-speed counter, use HDM(61).

When using the counter, the following bits are reserved and cannot be used
for any other purpose:

• SR bit 1804 (reset input)

• SR bit 1805 (count input)

• SR bit 1806 (UP/DOWN selection input)

• TC 46 (present count value)

• DM 00 to 31 (upper and lower limits)

If a power failure occurs, the count value of the counter immediately before
the power failure is retained.

The following table shows the upper and lower limits that need to be set in
DM 00 through DM 31. In this table, S is the present value of counter 46 and
R is the result word.

Lower limit Upper limit Present value of the counter Bit of R that
turns ON

DM 00 DM 01 Value of DM 00 ≤ S ≤ value of DM 01 00

DM 02 DM 03 Value of DM 02 ≤ S ≤ value of DM 03 01

DM 04 DM 05 Value of DM 04 ≤ S ≤ value of DM 05 02

DM 06 DM 07 Value of DM 06 ≤ S ≤ value of DM 07 03

DM 08 DM 09 Value of DM 08 ≤ S ≤ value of DM 09 04

DM 10 DM 11 Value of DM 10 ≤ S ≤ value of DM 11 05

DM 12 DM 13 Value of DM 12 ≤ S ≤ value of DM 13 06

DM 14 DM 15 Value of DM 14 ≤ S ≤ value of DM 15 07

DM 16 DM 17 Value of DM 16 ≤ S ≤ value of DM 17 08

DM 18 DM 19 Value of DM 18 ≤ S ≤ value of DM 19 09

DM 20 DM 21 Value of DM 20 ≤ S ≤ value of DM 21 10

DM 22 DM 23 Value of DM 22 ≤ S ≤ value of DM 23 11

DM 24 DM 25 Value of DM 24 ≤ S ≤ value of DM 25 12

DM 26 DM 27 Value of DM 26 ≤ S ≤ value of DM 27 13

DM 28 DM 29 Value of DM 28 ≤ S ≤ value of DM 29 14

DM 30 DM 31 Value of DM 30 ≤ S ≤ value of DM 31 15

Dedicated Bits

Note

Upper and Lower Limit
Setting

Timer and Counter Instructions Section 5-11

105

The values must be four-digit BCD in the range 0000 through 9999. Failure
to enter BCD values will not activate the ERR flag. Always set a lower limit
which is less than the corresponding upper limit. MOV(21) is useful in setting
limits. The following ladder diagram shows the use of MOV(21) for setting
limits.

1813 (normally ON)

0002 (start input)

MOV(21)

#0200

DM 00

MOV(21)

#1500

DM 01

MOV(21)

#0600

DM 02

MOV(21)

#2000

DM 03

RDM(60) 46

05

Transfers
preset value
to DM 00 to
03.

Corresponding
result word is 05

0000 LD 1813

0001 MOV(21)

0200

DM 00

0002 MOV(21)

1500

DM 01

0003 MOV(21)

0600

DM 02

0004 MOV(21)

2000

DM 03

0005 LD 0002

0006 RDM(60) 46

05

Address Instruction Operands Address Instruction Operands

Counts
inputs on
IR 1805.

Timer and Counter Instructions Section 5-11

106

The following timing example uses HR 0 as the results word.

Start input 0002

HR 000
Limits: 0001 to 0002

Count input (1805)

0000 0001 0002 0003 0004 0005 0004 0003 0002 0001 0000 9999 9998 9997 0000 00000000

HR 001
Limits: 0002 to 0004

Present value

Reset input (1804)

UP/DOWN selection (1806)

HR 015
Limits: 9980 to 9999

5-12 Data Shifting
This section describes the instructions that are used to create and manipu-
late shift registers. SFT(10) creates a single- or multiple-word register that
shift in a second execution condition when executed with an ON execution
condition. SFTR(84) creates a reversible shift register that is controlled
through the bits in a control word. WSFT(16) creates a multiple-word register
that shifts by word.

5-12-1 SHIFT REGISTER – SFT(10)

St : Starting word

IR, HR

E : End word

IR, HR

Operand Data AreasLadder Symbol

I

P

SFT(10)

St

E
R

E must be less than or equal to St, and St and E must be in the same data
area.

If a bit address in one of the words used in a shift register is also used in an
instruction that controls individual bit status (e.g., OUT, KEEP(11)), an error
(“COIL DUPL”) will be generated when program syntax is checked on the
Programming Console or another Programming Device. The program, how-
ever, will be executed as written. See Example 2: Controlling Bits in Shift
Registers for a programming example that does this.

Timing Example

Limitations

Data Shifting Section 5-12

107

SFT(10) shifts an execution condition into a shift register. SFT(10) is con-
trolled by three execution conditions, I, P, and R. If SFT(10) is executed and
1) execution condition P is ON and was OFF the last execution and 2) R is
OFF, then execution condition I is shifted into the rightmost bit of a shift regis-
ter defined between St and E, i.e., if I is ON, a 1 is shifted into the register; if I
is OFF, a 0 is shifted in. When I is shifted into the register, all bits previously
in the register are shifted to the left and the leftmost bit of the register is lost.

Execution
condition I

Lost
data

E St + 1, St + 2, ... St

The execution condition on P functions like a differentiated instruction, i.e., I
will be shifted into the register only when P is ON and was OFF the last time
SFT(10) was executed. If execution condition P has not changed or has gone
from ON to OFF, the shift register will remain unaffected.

St designates the rightmost word of the shift register; E designates the left-
most. The shift register includes both of these words and all words between
them. The same word may be designated for St and E to create a 16-bit (i.e.,
1-word) shift register.

When execution condition R goes ON, all bits in the shift register will be
turned OFF (i.e., set to 0) and the shift register will not operate until R goes
OFF again.

There are no flags affected by SFT(10).

The following example uses the 1-second clock pulse bit (1902) to so that the
execution condition produced by 0005 is shifted into a 3-word register be-
tween 10 and 12 every second.

I

P

SFT(10)

10

12
R

0005

1902

0006

Address Instruction Operands

0000 LD 0005

0001 LD 1902

0002 LD 0006

0003 SFT(10)

10

12

The following program is used to control the status of the 17th bit of a shift
register running from IR 00 through IR 01 (i.e. bit 00 of IR 01). When the 17th
bit is to be set, 0204 is turned ON. This causes the jump for JMP(04) 00 not
to be made for that one cycle and IR 0100 (the 17th bit) will be turned ON.

Description

Flags

Example 1:
Basic Application

Example 2:
Controlling Bits in Shift
Registers

Data Shifting Section 5-12

108

When 1280 is OFF (all times but the first cycle after 0204 has changed from
OFF to ON), the jump is taken and the status of 0100 will not be changed.

I

P

R

SFT(10)

 00

 01

JME(05) 00

JMP(04) 00

0200

0100

DIFU(13) 1280

0201

0202

0203

0204

1280

1280

Address Instruction Operands

0000 LD 0200

0001 AND 0201

0002 LD 0202

0003 LD 0203

0004 SFT(10)

00

01

0005 LD 0204

0006 DIFU(13) 1280

0007 LD 1280

0008 JMP(04) 00

0009 LD 1280

0010 OUT 0100

0011 JME(05) 00

When a bit that is part of a shift register is used in OUT (or any other instruc-
tion that controls bit status), a syntax error will be generated during the pro-
gram check, but the program will execute properly (i.e., as written).

The following program controls the conveyor line shown below so that faulty
products detected at the sensor are pushed down a chute. To do this, the
execution condition determined by inputs from the first sensor (0001) are
stored in a shift register: ON for good products; OFF for faulty ones. Con-
veyor speed has been adjusted so that HR 003 of the shift register can be
used to activate a pusher (0500) when a faulty product reaches it, i.e., when
HR 003 turns ON, 0500 is turned ON to activate the pusher.

Example 3:
Control Action

Data Shifting Section 5-12

109

The program is set up so that a rotary encoder (0000) controls execution of
SFT(10) through a DIFU(13), the rotary encoder is set up to turn ON and
OFF each time a product passes the first sensor. Another sensor (0002) is
used to detect faulty products in the chute so that the pusher output and HR
003 of the shift register can be reset as required.

Sensor

Chute

(0002)

(0500)

Sensor
(0001)

Rotary Encoder
(0000)

Pusher

0000 LD 0001

0001 LD 0000

0002 LD 0003

0003 SFT(10)

HR 0

HR 1

0004 LD HR 003

0005 OUT 0500

0006 LD 0002

0007 OUT NOT 0500

0008 OUT NOT HR 003

I

P

SFT(10)

HR 0

HR 1
R

0001

0000

0003

0500

HR 003

0002

HR 003

0500

Address Instruction Operands

5-12-2 REVERSIBLE SHIFT REGISTER – SFTR(84)

C : Control word

IR, DM, HR

St : Starting word

IR, DM, HR

Ladder Symbols

Operand Data Areas

E : End word

IR, DM, HR

SFTR(84)

C

St

E

St and E must be in the same data area and St must be less than or equal to
E.

Limitations

Data Shifting Section 5-12

!

110

SFTR(84) is used to create a single- or multiple-word shift register that can
be shifted to either the right or the left. To create a single-word shift register,
designate the same word for St and E. The control word provides the shift
direction, the status to be input into the register, the shift pulse, and the reset
input. The control word is allocated as follows:

15 14 13 12 Not used.

Shift direction
1 (ON): Left
0 ()FF: Right

Status to input into register

Shift pulse bit

Reset

The data in the shift register will be shifted one bit in the direction indicated
by bit 12, shifting one bit out to CY and the status of bit 13 into the other end
whenever SFTR(84) is executed with an ON execution condition as long as
the reset bit is OFF and as long as bit 14 is ON. If SFTR(84) is executed with
an OFF execution condition or if SFTR(84) is executed with bit 14 OFF, the
shift register will remain unchanged. If SFTR(84) is executed with an ON ex-
ecution condition and the reset bit (bit 15) is OFF, the entire shift register and
CY will be set to zero.

Flags ER: St and E are not in the same data area or St is greater than E.

Indirectly addressed DM word is non-existent. (Content of *DM word
is not BCD, or the DM area boundary has been exceeded.)

CY Receives the status of bit 00 of St or bit 15 of E depending on the
shift direction.

Caution If the execution condition for SFTR(84) is ON and bit 14 is ON, the status of bit 13
will be shifted into the register every cycle. Use DIFU(13) or DIFD(14) when it is
necessary to ensure that the shift is made only once each time the execution
condition comes ON.

5-12-3 WORD SHIFT – WSFT(16)

St : Start word

IR, DM, HR

E : End word

IR, DM, HR

Ladder Symbols Operand Data Areas

WSFT(16)

St

E

St and E must be in the same data area and St must be less than E.

Description

Limitations

Data Shifting Section 5-12

111

When the execution condition is OFF, WSFT(16) is not executed and the
next instruction is moved to. When the execution condition is ON, 0000 is
moved into St, the content of St is moved to St + 1, the content of St + 1 is
moved to St + 2, etc., and the content of E is lost.

F 0 C 2 3 4 5 2 1 0 2 9

E St + 1 St

3 4 5 2 1 0 2 9 0 0 0 0

E St + 1 St

Lost

0000

Flags ER: St and E are not in the same data area.

Indirectly addressed DM word is non-existent. (Content of *DM word
is not BCD, or the DM area boundary has been exceeded.)

5-13 Data Movement
This section describes the instructions used for moving data between differ-
ent addresses in data areas. These movements can be programmed within
the same data area or between different data areas. Data movement is es-
sential for utilizing all of the data areas of the PC. All of these instructions
change only the content of the words to which data is being moved, i.e., the
content of source words is the same before and after execution of any of the
move instructions.

5-13-1 MOVE – MOV(21)

S : Source word

IR, SR, DM, HR, TC, #

D : Destination word

IR, DM, HR

Ladder Symbol Operand Data Areas

MOV(21)

S

D

When the execution condition is OFF, MOV(21) is not executed and the next
instruction is moved to. When the execution condition is ON, MOV(21) trans-
fers the content of S (specified word or four-digit hexadecimal constant) to D.

Source word Destination word

Bit status
not changed.

TC numbers cannot be designated as D to change the PV of the timer or
counter.

EQ: ON when all zeros are transferred to D.

Description

Description

Precautions

Flags

Data Movement Section 5-13

112

5-13-2 MOVE NOT – MVN(22)

S : Source word

IR, SR, DM, HR, TC, #

D : Destination word

IR, DM, HR

Ladder Symbol Operand Data Areas

MVN(22)

S

D

When the execution condition is OFF, MVN(22) is not executed and the next
instruction is moved to. When the execution condition is ON, MOV(21) trans-
fers the inverted content of S (specified word or four-digit hexadecimal con-
stant) to D, i.e., for each ON bit in S, the corresponding bit in D is turned
OFF, and for each OFF bit in S, the corresponding bit in D is turned ON.

Source word Destination word

Bit status
inverted.

TC numbers cannot be designated as D to change the PV of the timer or
counter.

EQ: ON when all zeros are transferred to D.

5-14 DATA COMPARE – CMP(20)
This section describes the instruction used for comparing data. CMP(20) is
used to compare the contents of two words.

Cp1 : First compare word

IR, SR, DM, HR, TC, #

Cp2 : Second compare word

IR, SR, DM, HR, TC, #

Ladder Symbols Operand Data Areas

CMP(20)

Cp1

Cp2

When comparing a value to the PV of a timer or counter, the value must be
four-digit BCD.

When the execution condition is OFF, CMP(20) is not executed and the next
instruction is moved to. When the execution condition is ON, CMP(20) com-
pares Cp1 and Cp2 and outputs the result to the GR, EQ, and LE flags in the
SR area.

Placing other instructions between CMP(20) and accessing the EQ, LE, and
GR flags may change the status of these flags. Be sure to access them be-
fore the desired status is changed.

EQ: ON if Cp1 equals Cp2.

LE: ON if Cp1 is less than Cp2.

GR: ON if Cp1 is greater than Cp2.

Description

Precautions

Limitations

Description

Precautions

DATA COMPARE – CMP(20) Section 5-14

113

The following example shows how to save the comparison result immedi-
ately. If the content of HR 8 is greater than that of 9, 0200 is turned ON; if the
two contents are equal, 0201 is turned ON; if content of HR 8 is less than
that of HR 9, 0202 is turned ON. In some applications, only one of the three
OUTs would be necessary, making the use of TR 0 unnecessary. With this
type of programming, 0200, 0201, and 0202 are changed only then CMP(20)
is executed.

CMP(20)

HR 8

HR 9

0000

1905
0200

1907
0202

TR
0

1906

0201

Greater Than

Equal

Less Than

Address Instruction Operands Address Instruction Operands

0000 LD 0000

0001 OUT TR 0

0002 CMP(20)

HR 8

HR 9

0003 LD TR 0

0004 AND 1905

0005 OUT 0200

0006 LD TR 0

0007 AND 1906

0008 OUT 0201

0009 LD TR 0

0010 AND 1907

0011 OUT 0202

The following example uses TIM, CMP(20), and the LE flag (1907) to pro-
duce outputs at particular times in the timer’s countdown. The timer is started
by turning ON 0000. When 0000 is OFF, the TIM (10) is reset and the second
two CMP(20)s are not executed (i.e., executed with OFF execution condi-
tions). Output 0200 is output after 100 seconds; output 0201, after 200 sec-
onds; output 0202, after 300 seconds; and output 0204, after 500 seconds.

Example 1:
Saving CMP(20) Results

Example 2:
Obtaining Indications
during Timer Operation

DATA COMPARE – CMP(20) Section 5-14

114

The branching structure of this diagram is important so that 0200, 0201, and
0202 are controlled properly as the timer counts down. Because all of the
comparisons here are to the timer’s PV, the other operand for each CMP(20)
must be in 4-digit BCD.

TIM 10

0500 s.

#2000

CMP(20)

TIM 10

#3000

CMP(20)

TIM 10

CMP(20)

TIM 10

#4000

0201

0204

0202

0000

0200

1907

0200

1907

0201

1907

TIM 10

Output at
100 s.

Output at
200 s.

Output at
300 s.

Output at
500 s.

Address Instruction Operands Address Instruction Operands

0000 LD 0000

0001 TIM 10

0500

0002 CMP(20)

TIM 10

4000

0003 AND 1907

0004 OUT 0200

0005 LD 0200

0006 CMP(20)

TIM 10

3000

0007 AND 1907

0008 OUT 0201

0009 LD 0201

0010 CMP(20)

TIM 10

2000

0011 AND 1907

0012 OUT 0202

0013 LD TIM 10

0014 OUT 0204

DATA COMPARE – CMP(20) Section 5-14

115

5-15 Data Conversion
The conversion instructions convert word data that is in one format into an-
other format and output the converted data to specified result word(s). Con-
versions are available to convert between binary (hexadecimal) and BCD
and between multiplexed and non-multiplexed data. All of these instructions
change only the content of the words to which converted data is being
moved, i.e., the content of source words is the same before and after execu-
tion of any of the conversion instructions.

5-15-1 BCD-TO- BINARY – BIN(23)

S : Source word (BCD)

IR, SR, DM, HR, TC

R : Result word

IR, DM, HR

Ladder Symbol Operand Data Areas

BIN(23)

S

R

BIN(23) can be used to convert BCD to binary so that displays on the Pro-
gramming Console or any other programming device will appear in hexadeci-
mal rather than decimal. It can also be used to convert to binary to perform
binary arithmetic operations rather than BCD arithmetic operations, e.g.,
when BCD and binary values must be added.

ER: The content S is not BCD

EQ: ON when 0000 is placed in R.

5-15-2 BINARY-TO-BCD – BCD(24)

S : Source word (binary)

IR, SR, DM, HR, TC

R : Result word

IR, DM, HR

Ladder Symbol Operand Data Areas

BCD(24)

S

R

If the content of S exceeds 270F, the converted result would exceed 9999
and BCD(24) will not be executed. When the instruction is not executed, the
content of R remains unchanged.

BCD(24) converts the binary (hexadecimal) content of S into the numerically
equivalent BCD bits, and outputs the BCD bits to R. Only the content of R is
changed; the content of S is left unchanged.

BCD(24) can be used to convert binary to BCD so that displays on the Pro-
gramming Console or any other programming device will appear in decimal
rather than hexadecimal. It can also be used to convert to BCD to perform
BCD arithmetic operations rather than binary arithmetic operations, e.g.,
when BCD and binary values must be added.

ER: S is greater than 270F.

EQ: ON when 0000 is placed in R.

Description

Flags

Limitations

Description

Flags

Data Conversion Section 5-15

116

5-15-3 4-TO-16 DECODER – MLPX(76)

S : Source word

IR, SR, DM, HR, TC

Di : Digit designator

IR, DM, HR, TC, #

Ladder Symbol

Operand Data Areas

R : First result word

IR, DM, HR

MLPX(76)

S

Di

R

The rightmost two digits of Di must each be between D and 3.

All result words must be in the same data area.

When the execution condition is OFF, MLPX(76) is not executed and the next
instruction is moved to. When the execution condition is ON, MLPX(76) con-
verts up to four, four-bit hexadecimal digits from S into decimal values from 0
to 15, each of which is used to indicate a bit position. The bit whose number
corresponds to each converted value is then turned ON in a result word. If
more than one digit is specified, then one bit will be turned ON in each of
consecutive words beginning with R. (See examples, below.)

The following is an example of a one-digit decode operation from digit num-
ber 1 of S, i.e., here Di would be 0001.

S

R

C

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Bit C (i.e., bit number 12) turned ON.

The first digit and the number of digits to be converted are designated in Di. If
more digits are designated than remain in S (counting from the designated
first digit), the remaining digits will be taken starting back at the beginning of
S. The final word required to store the converted result (R plus the number of
digits to be converted) must be in the same data area as R, e.g., if two digits
are converted, the last word address in a data area cannot be designated; if
three digits are converted, the last two words in a data area cannot be desig-
nated.

The digits of Di are set as shown below.

Specifies the first digit to be converted (0 to 3)

Number of digits to be converted (0 to 3)
0: 1 digits

1: 2 digits
2: 3 digits
3: 4 digits

Not used.

Digit numbers: 0 1 2 3

Limitations

Description

Digit Designator

Data Conversion Section 5-15

117

Some example Di values and the digit-to-word conversions that they produce
are shown below.

0

1

2

3

R

R + 1

R

R + 1

R + 2

0

1

2

3

0

1

2

3

0

1

2

3

R

R + 1

R + 2

R + 3

R

R + 1

R + 2

R + 3

S

Di : 0031 Di : 0023

Di : 0030Di : 0010

S

SS

ER: Undefined digit designator, or R plus number of digits exceeds a data
area.

The following program converts three digits of data from DM 20 to bit posi-
tions and turns ON the corresponding bits in three consecutive words starting
with HR 1.

0000
MLPX(76)

DM 20

#0021

HR 1

Address Instruction Operands

0000 LD 0000

0001 MLPX(76)

DM 20

0021

HR 1

S: DM 20 R: HR 1 R+1: HR 2 R+2: HR 3

DM 00 20 HR 100 0 HR 200 0 HR 300 1

DM 01 21 HR 101 0 HR 201 0 HR 301 0

DM 02 22 HR 102 0 HR 202 0 HR 302 0

DM 03 23 HR 103 0 HR 203 0 HR 303 0

DM 04 1 20 HR 104 0 HR 204 0 HR 304 0

DM 05 1 21 1 HR 105 0 HR 205 0 HR 305 0

DM 06 1 22 HR 106 0 HR 206 1 HR 306 0

DM 07 1 23 HR 107 0 HR 207 0 HR 307 0

DM 08 0 20 HR 108 0 HR 208 0 HR 308 0

DM 09 1 21 2 HR 109 0 HR 209 0 HR 309 0

DM 10 1 22 HR 110 0 HR 210 0 HR 310 0

DM 11 0 23 HR 111 0 HR 211 0 HR 311 0

DM 12 0 20 HR 112 0 HR 212 0 HR 312 0

DM 13 0 21 3 HR 113 0 HR 213 0 HR 313 0

DM 14 0 22 HR 114 0 HR 214 0 HR 314 0

DM 15 0 23 HR 115 1 HR 215 0 HR 315 0

15

6

0

Not
Converted

Flags

Example

Data Conversion Section 5-15

118

5-15-4 16-TO-4 ENCODER – DMPX(77)

S : First source word

IR, SR, DM, HR, TC

R : Result word

IR, DM, HR

Ladder Symbol

Operand Data Areas

Di : Digit designator

IR, DM, HR, TC, #

DMPX(77)

S

R

Di

The rightmost two digits of Di must each be between 0 and 3. All source
words must be in the same data area.

When the execution condition is OFF, DMPX(77) is not executed and the
next instruction is moved to. When the execution condition is ON, DMPX(77)
determines the position of the highest ON bit in S, encodes it into single-digit
hexadecimal value corresponding to the bit number of the highest ON bit
number, then transfers the hexadecimal value to the specified digit in R. The
digits to receive the results are specified in Di, which also specifies the num-
ber of digits to be encoded.

The following is an example of a one-digit encode operation to digit number 1
of R, i.e., here Di would be 0001.

R

S

C

0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0

C transferred to indicate bit number 12 as
the highest ON bit.

Up to four digits from four consecutive source words starting with S may be
encoded and the digits written to R in order from the designated first digit. If
more digits are designated than remain in R (counting from the designated
first digit), the remaining digits will be placed at digits starting back at the be-
ginning of R.

The final word to be converted (S plus the number of digits to be converted)
must be in the same data area as SB.

The digits of Di are set as shown below.

Specifies the first digit to receive converted data (0 to 3).

Number of words to be converted (0 to 3)
0: 1 word
1: 2 words
2: 3 words
3: 4 words

Not used.

Digit Numbers: 0 1 2 3

Limitations

Description

Digit Designator

Data Conversion Section 5-15

119

Some example Di values and the word-to-digit conversions that they produce
are shown below.

0

1

2

3

R

Di : 0011

S

S + 1

0

1

2

3

S

S + 1

S + 2

S + 3

Di : 0030

R

S

S + 1

S + 2

S + 3

0

1

2

3

Di : 0032
R

Di : 0013

0

1

2

3

S

S + 1

R

ER: Undefined digit designator, or S plus number of digits exceeds a data
area.

Content of a source word is 0000.

When 0000 is ON, the following diagram encodes IR words 10 and 11 to the
first two digits of HR 2 and then encodes DM 10 and 11 to the last two digits
of HR 2. Although the status of each source word bit is not shown, it is as-
sumed that the bit with status 1 (ON) shown is the highest bit that is ON in
the word.

0000
DMPX(77)

10

HR 2

#0010

DM10

HR 2

#0012

 IR 010

1000

 :

1011 1

1012 0

 : :

1015 0

 DM 10

DM1000

 :

DM1001 1

DM1002 0

 : :

DM1015 0

Digit 0

 IR 011

1100

 :

1109 1

1110 0

 : :

1115 0

Digit 1

Digit 2

Digit 3

B

9

1

8
 DM 11

DM1100

 :

DM1108 1

DM1109 0

 : :

DM1115 0

HR
2

DMPX(77)

Address Instruction Operands

0000 LD 0000

0001 DMPX(77)

10

HR 2

0010

0002 DMPX(77)

DM 10

HR 2

0012

Flags

Example

Data Conversion Section 5-15

120

5-16 BCD Calculations
The BCD calculation instructions perform mathematic operations on BCD
data.

These instructions change only the content of the words in which results are
placed, i.e., the contents of source words are the same before and after exe-
cution of any of the BCD calculation instructions.

STC(40) and CLC(41), which set and clear the carry flag, are included in this
group because most of the BCD operations make use of the carry flag (CY)
in their results. Binary arithmetic and shift operations also use CY.

The addition and subtraction instructions use CY in the calculation as well as
in the result. Be sure to clear CY if its previous status is not required in the
calculation, and to use the result placed in CY, if required, before it is
changed by execution of any other instruction.

5-16-1 BCD ADD – ADD(30)

Au : Augend word (BCD)

IR, SR, DM, HR, TC, #

Ad : Addend word (BCD)

IR, SR, DM, HR, TC, #

Ladder Symbol

Operand Data Areas

R : Result word

IR, DM, HR

ADD(30)

Au

Ad

R

When the execution condition is OFF, ADD(30) is not executed and the next
instruction is moved to. When the execution condition is ON, ADD(30) adds
the contents of Au, Ad, and CY, and places the result in R. CY will be set if
the result is greater than 9999. Au and Ad should not be designated as con-
stants. This instruction will be executed every cycle as long as the execution
condition remains ON. If the instruction is to be executed only once for a giv-
en ON execution condition then it must be used in conjunction with DIFU(13)
or DIFD(14).

Au + Ad + CY CY R

ER: Au and/or Ad is not BCD.

CY: ON when there is a carry in the result.

EQ: ON when the result is 0.

Description

Flags

BCD Calculations Section 5-16

121

If 0002 is ON, the following diagram clears CY with CLC(41), adds the con-
tent of IR 02 to a constant (6103), places the result in DM 01, and then
moves either all zeros or 0001 into DM 02 depending on the status of CY
(1904). This ensures that any carry from the last digit is preserved in R + 1 so
that the entire result can be later handled as eight-digit data.

TR 0

MOV(21)

#0001

DM 02

0002
CLC(41)

ADD(30)

 02

#6103

DM 01

MOV(21)

#0000

DM 02

1904

1904

Address Instruction Operands

0000 LD 0002

0001 OUT TR 0

0002 CLC(41)

0003 AND(30)

02

6103

DM 01

0004 AND 1904

0005 MOV(21)

0001

DM 02

0006 LD TR 0

0007 AND NOT 1904

0008 MOV(21)

0000

DM 02

Consecutive ADD(30)s can be used to perform eight-digit BCD addition. By
using two ADD(30)s and combining the augend and the addend words of one
ADD(30) with those of the other, two 8-digit values can be added. The result
may or may not be 9 digits depending on whether a carry is generated.

0000 LD 0002

0001 DIFU(13) 1000

0003 LD 1000

0004 OUT TR 0

0005 CLC(41)

0006 AND(30)

DM 00

DM 02

DM 04

0007 AND(30)

DM 01

DM 03

DM 05

0008 AND 1904

0009 MOV(21)

0001

DM 06

0010 LD TR 0

0011 AND NOT 1904

0012 MOV(21)

0000

DM 06

TR 0

MOV(21)

#0001

DM 06

1000
CLC(41)

ADD(30)

DM 00

DM 02

DM 04

MOV(21)

#0000

DM 06

1904

1904

0002
DIFU(13) 1000

ADD(30)

DM 01

DM 03

DM 05

Address Instruction Operands

In the above program the 8 digit augend consists of two words: DM 00 and
DM 01, with DM 01 being used for the 4 left digits and 00 for the 4 right dig-
its. Similarly the 8-digit addend consist of DM 02 and 03. Three words are
used to hold the results of the addition: DM 04, DM 05, and DM 06. In this

Example

BCD Calculations Section 5-16

!

122

case DM 05 and DM 04 are used to represent the intermediate 4 digits and
the 4 right digits respectively. DM 06 represents the leftmost digit, the 9th dig-
it.

If a carry is generated, SR 1904 (CY) is turned ON and the constant 0001 is
transferred to DM 06. If a carry is not generated SR 1904 remains OFF and
the constant 0000 is transferred to DM 06.

5-16-2 BCD SUBTRACT – SUB(31)

Mi : Minuend word (BCD)

IR, SR, DM, HR, TC, #

Su : Subtrahend word (BCD)

IR, SR, DM, HR, TC, #

Ladder Symbol

Operand Data Areas

R : Result word

IR, DM, HR

SUB(31)

Mi

Su

R

When the execution condition is OFF, SUB(31) is not executed and the next
instruction is moved to. When the execution condition is ON, SUB(31) sub-
tracts the contents of Su and CY from Mi and places the result in R. If the
result is negative, CY is set and the 10’s complement of the actual result is
placed in R. To convert the 10’s complement to the true result, subtract the
content of R from zero (see example below). This instruction will be executed
every cycle as long as the execution condition remains ON. If the instruction
is to be executed only once then it must be used in conjunction with
DIFU(13) or DIFD(14).

Mi – Su – CY CY R

ER: Mi and/or Su is not BCD.

CY: ON when the result is negative, i.e., when Mi is less than Su plus CY.

EQ: ON when the result is 0.

Caution Be sure to clear the carry flag with CLC(41) before executing SUB(31) if its previ-
ous status is not required, and check the status of CY after doing a subtraction
with SUB(31). If CY is ON as a result of executing SUB(31) (i.e., if the result is
negative), the result is output as the 10’s complement of the true answer. To con-
vert the output result to the true value, subtract the value in R from 0.

When 0002 is ON, the following diagram clears CY, subtracts the contents of
DM 01 and CY from the content of IR 10 and places the result in HR 2.

If CY is set by executing SUB(31), the result in HR 2 is subtracted from zero
(note that CLC(41) is again required to obtain an accurate result), the result
is placed back in HR 2, and HR 300 is turned ON to indicate a negative re-
sult.

Description

Flags

Example

BCD Calculations Section 5-16

123

If CY is not set by executing SUB(31), the result is positive, the second sub-
traction is not performed and HR 300 is not turned ON. HR 300 is pro-
grammed as a self-maintaining bit so that a change in the status of CY will
not turn it OFF when the program is recycled.

CLC(41)

SUB(31)

10

DM 01

HR 2

CLC(41)

SUB(31)

#0000

HR 2

HR 2

TR 0

1904
HR 300

0002

1904

HR 300

First
subtraction

Second
subtraction

Turned ON to indicate
negative result.

0000 LD 0002

0001 OUT TR 0

0002 CLC(41)

0003 @SUB(31)

10

DM 01

HR 2

0004 AND 1904

0005 CLC(41)

0006 @SUB(31)

0000

HR 2

HR 2

0007 LD TR 0

0008 AND 1904

0009 OR HR 300

0010 OUT HR 300

Address Instruction Operands

5-16-3 BCD MULTIPLY – MUL(32)

Md : Multiplicand word (BCD)

IR, DM, HR, TC, #

Mr : Multiplier word (BCD)

IR, DM, HR, TC, #

Ladder Symbol

Operand Data Areas

MUL(32)

Md

Mr

R

R : First result word (BCD)

IR, DM, HR

R and R + 1 must be in the same data area.Limitations

BCD Calculations Section 5-16

124

When the execution condition is OFF, MUL(32) is not executed and the next
instruction is moved to. When the execution condition is ON, the contents of
Md and Mr are multiplied and the rightmost four digits of the result are placed
in R; the leftmost four digits, in R + 1.

Md word

Mr word

R +1 word R word

X

ER: Md or Mr is not in BCD.

Indirectly addressed DM word is non-existent. (Content of *DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

When IR 0000 is ON with the following program, the contents of IR 13 and
DM 05 are multiplied and the result is placed in HR 7 and HR 8. Example
data and calculations are shown below the program.

MUL(32)

13

DM 05

HR 7

0000

R+1 : HR 8 R : HR 7
0 0 0 8 3 9 0 0

MD : IR 13
3 3 5 6

MR : DM 05
0 0 2 5

X

Address Instruction Operands

0000 LD 0000

0001 MUL(32)

13

DM 05

HR 7

5-16-4 BCD DIVIDE – DIV(33)

Dd : Dividend word (BCD)

IR, SR, DM, HR, TC, #

Ladder Symbol

Dr : Divisor word (BCD)

IR, SR, DM, HR, TC, #

Operand Data Areas

DIV(33)

Dd

Dr

R

R : First result word (BCD)

IR, DM, HR

R and R + 1 must be in the same data area.

Description

Flags

Example

Limitations

BCD Calculations Section 5-16

125

When the execution condition is OFF, DIV(33) is not executed and the next
instruction is moved to. When the execution condition is ON, the content of
Dd is divided by the content of Dr and the result is placed in R and R + 1: the
quotient in R and the remainder in R + 1.

Dd wordDr word

R word R + 1 word÷
Quotient Remainder

ER: Dd or Dr is not in BCD.

Indirectly addressed DM word is non-existent. (Content of *DM word
is not BCD, or the DM area boundary has been exceeded.)

EQ: ON when the result is 0.

When IR 0000 is ON with the following program, the content of IR 20 is di-
vided by the content of HR 9 and the result is placed in DM 17 and DM 18.
Example data and calculations are shown below the program.

DIV(33)

20

HR 9

DM 17

0000

R : DM 17 R + 1 : DM 18
1 1 5 0 0 0 0 2

Dd : IR 20
3 4 5 2

÷

Quotient Remainder

Dd : IR 20
0 0 0 3

Address Instruction Operands

0000 LD 0000

0001 DIV(33)

20

HR 9

DM 17

5-16-5 SET CARRY – STC(40)
Set carry is used to set (turn ON) the CY (SR bit 1904) to “1.”

0002
STC(40)

0000 LD 0002

0001 STC(40)

Address Instruction Operands

5-16-6 CLEAR CARRY – CLC(41)
Clear carry is used to reset (turn OFF) the CY (SR bit 1904) to “0.”

0002
CLC(41)

0000 LD 0002

0001 CLC(41)

Address Instruction Operands

Description

Flags

Example

BCD Calculations Section 5-16

126

5-17 Subroutines
Subroutines can be used for one of two different purposes: either to separate
off sections of large control tasks so that they can be handled as smaller
ones and to enable you to reuse a given set of instructions at different places
within one program or as a part of different programs. When the main pro-
gram calls a subroutine, control is transferred to the subroutine and the in-
structions in the subroutine are executed. The instructions within a subrou-
tine are written in the same way as main program code. When all the instruc-
tions in the subroutine have been executed, control returns to the main pro-
gram.

5-17-1 SUBROUTINE DEFINE and SUBROUTINE RETURN
SBN(92)/RET(93)

N: Subroutine number

(00 to 15)

Ladder Symbol Definer Data Areas

SBN(92) N

Ladder Symbol

RET(93)

Each subroutine number can be used in SBN(92) once only, i.e., up to 16
subroutines may be programmed.

SBN(92) is used to mark the beginning of a subroutine program; RET(93) is
used to mark the end. Each subroutine is identified with a subroutine number,
N, that is programmed as a definer for SBN(92). This same subroutine num-
ber is used in any SBS(91) that calls the subroutine (see next section). No
subroutine number is required with RET(93).

All subroutines must be programmed at the end of the main program. When
one or more subroutines have been programmed, the main program will be
executed up to the first SBN(92) before returning to address 0000 for the
next cycle. Subroutines will not be executed unless called by SBS(91).

END(01) must be placed at the end of the last subroutine program, i.e., after
the last RET(93). It is not required at any other point in the program.

Flags There are no flags directly affected by these instructions.

5-17-2 SUBROUTINE ENTRY – SBS(91)

N: Subroutine number

(00 to 15)

Ladder Symbol Definer Data Areas

SBS(91) N

To execute a subroutine, it must be called from the main by programming
SBS(91) with the number of the desired subroutine. When SBS(91) is exe-
cuted (i.e., when the execution condition for it is ON), the instructions be-
tween the SBN(92) with the same subroutine number and the first RET(93)
after it are executed before execution returns to the instruction following the
SBS(91) that made the call.

Limitations

Description

Description

Subroutines Section 5-17

!

127

SBS(91) may be used as many times as desired in the program (i.e., the
same subroutine may be called from different places in the program).

SBS(91) may also be placed into a subroutine to shift program execution
from one subroutine to another, i.e., subroutines may be nested. When the
second subroutine has been completed (i.e., RET(93) has been reached),
the first subroutine is returned to and completed before returning to the main
program. Nesting is possible to up to eight levels. A subroutine cannot call
itself, e.g., SBS(91) 00 cannot be programmed within the subroutine defined
with SBN(92).

The following diagram illustrates program execution flow for various execu-
tion conditions for two SBS(91). In actual execution, the PC actually executes
a sequential program, with the subroutines inserted in at the required loca-
tions.

SBS(91) 00

SBS(91) 01

SBN(92) 00

RET(93)

SBN(92) 01

RET

END(01)

Main
program

Subroutines

A

B

C

D

E

A

A

A

A

B

B

B

B

C

C

C

C

D

D

E

E

OFF execution conditions for 00 and 01

ON execution condition for 00

ON execution condition for 01

ON execution conditions for 00 and 01

ER: A subroutine does not exist for the specified subroutine number.

A subroutine has called itself.

Subroutines have been nested to more than eight levels.

Caution SBS(91) will not be executed and the subroutine will not be called when ER is
ON.

Flags

Subroutines Section 5-17

128

5-18 Step Instructions
The step instructions STEP(08) and SNXT(09) are used in conjunction to set
up breakpoints between sections in large programs so that the sections can
be executed as units and reset upon completion. A step of program will usu-
ally be defined to correspond with an actual process in the application. (Refer
to the application examples later in this section.) A section is like normal pro-
gramming code except that certain instruction (e.g. IL(02)/ILC(03), JMP(04)/
JME(05)) may not be included.

5-18-1 STEP DEFINE and STEP START – STEP(08)/SNXT(09)

B: Control bit

IR, HR

Ladder Symbols Definer Data Areas

STEP(08) B STEP(08)

B: Control bit

IR, HR

Ladder Symbol Definer Data Areas

SNXT(09) B

STEP(08) is used with a control bit in the IR or HR area to define the begin-
ning of a section of the program called a step. STEP(08) does not require an
execution condition, i.e., its execution is controlled through the control bit. To
start execution of the step, SNXT(09) is used with the same control bit as the
STEP(08) that defines the beginning of the step. If SNXT(09) is executed
with an ON execution condition, the step with the same control bit is exe-
cuted. If the execution condition is OFF, the step is not executed. The
SNXT(09) must be written into the program before the step it starts. It can be
used at different locations before the step to control the step according to two
different execution conditions (see example 2, below). Any step in the pro-
gram that has not been started with SNTX(09) will not be executed.

Once SNXT(09) is used in the program, step execution will continue until
STEP(08) is executed without a control bit. STEP(08) without a control bit
must be preceded by SNXT(09) with a dummy control bit. The dummy con-
trol bit may be any unused IR or HR bit. It cannot be a control bit used in a
STEP(08). All control bits used to produce steps, however, must be from the
same word and must be used consecutively, and therefore a maximum of 16
steps can be programmed.

Execution of a step is completed either by execution of the next SNXT(09) or
by turning OFF the control bit for the step (see example 3 below). When the
step is completed, all of the IR and HR bits in the step are turned OFF and all
timers in the step are reset to their SV. Counters, shift registers, and bits
used in KEEP(11) maintain status.

More than one step can be programmed in series. Each step must start with
STEP(08) and generally ends with SNXT(09) (see example 3, below, for an
exception). When steps are programmed in series, three types of execution
are possible: sequential, branching, or parallel. The execution conditions for
and positioning of SNXT(09) determine how the steps are executed. The
three examples given below demonstrate these three types of step execu-
tion.

Description

Step Instructions Section 5-18

129

Interlocks, jumps, SBN(92), and END(01) must not be used within step pro-
grams.

Bits used as control bits must not be used anywhere else in the program un-
less they are used to control the step (see example 3, below).

If IR bits are used for control bits, their status will be lost during any power
interruption. If it is necessary to maintain status to resume execution at the
same step, HR bits must be used.

1811: Step Start flag; turns ON for one cycle when STEP(08) is executed
and can be used to reset counters in steps as shown below if neces-
sary.

SNXT(09) 1000

CP

R

CNT 01

#0003

0000

0100

1811

STEP(08) 1000

1 cycle

1811

1000

Start

0000 LD 0000

0001 SNXT(09) 1000

0002 STEP(08) 1000

0003 LD 0100

0004 LD 1811

0005 CNT 01

0003

Address Instruction Operands

Precautions

Flags

Step Instructions Section 5-18

130

Examples
The following three examples demonstrate the three types of execution con-
trol possible with step programming. Example 1 demonstrates sequential
execution; example 2, branching execution; and example 3, parallel execu-
tion.

The following process requires that three processes, loading, part installa-
tion, and inspection/discharge, be executed in sequence with each process
being reset before continuing on to the next process. Various sensors (SW1,
SW2, SW3, and SW4) are positioned to signal when processes are to start
and end.

SW 1

SW 2
SW 3

SW 4

Loading Part installation Inspection/discharge

The following diagram demonstrates the flow of processing and the switches
that are used for execution control.

Process A

Process B

Process C

Loading

Part Installation

Inspection/discharge

SW1

SW2

SW3

SW4

Example 1: Sequential
Execution

Step Instructions Section 5-18

131

The program for this process, shown below, utilizes the most basic type of
step programming: each step is completed by a unique SNXT(09) that starts
the next step. Each step starts when the switch that indicates the previous
step has been completed turns ON.

0000 LD 0001

0001 SNXT(09) 1000

0002 STEP(08) 1000

Address Instruction Operands

Address Instruction Operands

0100 LD 0002

0101 SNXT(09) 1001

0102 STEP(08) 1001

Address Instruction Operands

0200 LD 0003

0201 SNXT(09) 1002

0202 STEP(08) 1002

Address Instruction Operands

0300 LD 0004

0301 SNXT(09) 1003

0302 STEP(08) 1003

SNXT(09) 1000

0001 (SW1)

STEP(08) 1000

SNXT(09) 1001

STEP(08) 1001

SNXT(09) 1002

STEP(08) 1002

SNXT(09) 1003

STEP(08)

Process A

Process B

Process C

0002 (SW2)

0003 (SW3)

0004 (SW4)

Process A
started.

Process A
reset.

Process B
started.

Process
B reset.
Process C
started.

Process C
reset.

The following process requires that a product is processed in one of two
ways, depending on its weight, before it is printed. The printing process is the
same regardless of which of the first processes is used. Various sensors are
positioned to signal when processes are to start and end.

SW A1 SW A2

SW B1 SW B2

Process CWeight scale

Process B

Process A

Printer
SW D

Example 2: Branching
Execution

Step Instructions Section 5-18

132

The following diagram demonstrates the flow of processing and the switches
that are used for execution control. Here, either process A or process B is
used depending on the status of SW A1 and SW B1.

Process A

Process C

End

SW A1 SW B1

SW A2 SW B2

SW D

Process B

The program for this process, shown below, starts with two SNXT(09) that
start processes A and B. Because of the way 0001 (SWA1) and 0002 (SB
B1) are programmed, only one of these will be executed to start either proc-
ess A or process B. Both of the steps for these processes end with a
SNXT(09) that starts the step for process C.

0000 LD 0001

0001 AND NOT 0002

0002 SNXT(09) 1400

0003 LD NOT 0001

0004 AND 0002

0005 SNXT(09) 1401

0006 STEP(08) 1400

SNXT(09) 1401

0002 (SW B2)

STEP(08) 1400

SNXT(09) 1402

STEP(08) 1401

SNXT(09) 1402

STEP(08) 1402

SNXT(09) 1403

STEP(08)

Process A

Process B

Process C

0003 (SW A2)

0004 (SW B2)

0005 (SW D)

Process A
started.

Process A
reset.
Process
C started.

Process B
reset.
Process
C started.

Process C
reset.

0001 (SW A1)

SNXT(09) 1400

0002 (SW B2)

0001 (SW A1)

Address Instruction Operands

Address Instruction Operands

0100 LD 0003

0101 SNXT(09) 1402

0102 STEP(08) 1401

Address Instruction Operands

0200 LD 0004

0201 SNXT(09) 1402

0202 STEP(08) 1402

Address Instruction Operands

0300 LD 0005

0301 SNXT(09) 1403

0302 STEP(08)

Step Instructions Section 5-18

133

The following process requires that two parts of a product pass simultane-
ously through two processes each before they are joined together in a fifth
process. Various sensors are positioned to signal when processes are to
start and end.

Process C

SW1

SW2

Process A
SW3

SW4

Process D

Process B

Process E

SW6

SW5 SW7

The following diagram demonstrates the flow of processing and the switches
that are used for execution control. Here, process A and process C are
started together. When process A finishes, process B starts; when process C
finishes, process D starts. When both processes B and D have finished,
process E starts.

Process A

Process E

End

Process C

SW7

Process B Process D

SW3 SW4

SW 1 and SW2 both ON

SW5 and SW6 both ON

The program for this operation, shown below, starts with two SNXT(09) that
start processes A and C. These instructions branch from the same instruction
line and are always executed together, starting steps for both A and C. When
the steps for both A and C have finished, the steps for process B and D be-
gin immediately.

When both process B and process D have finished (i.e., when SW5 and SW6
turn ON), processes B and D are reset together by the SNXT(09) at the end
of the programming for process B. Although there is no SNXT(09) at the end
of process D, the control bit for it is turned OFF by executing SNXT(09) 1002.
This is because the OUT to IR 1101 is in the step reset by SNXT(09) 1002.

Example 3: Parallel
Execution

Step Instructions Section 5-18

134

Thus, process B is reset directly and process B is set indirectly before exe-
cuting the step for process E.

0200 LD 1003

0201 OUT 1003

0202 AND 0004

0203 SNXT(09) 1004

0204 STEP(08) 1002

STEP(08) 1000

SNXT(09) 1001

STEP(08) 1001

STEP(08) 1004

SNXT(09) 1005

STEP(08)

Process A

Process B

Process C

0002 (SW3)

0005 (SW7)

Process A
started.

Process A
reset.

Process B
started.

Process E
reset.

0001 (SW1 and SW2))

SNXT(09) 1000

SNXT(09) 1002 Process C
started.

1003

SNXT(09) 1004

0004 (SW5 and SW6)

1003

STEP(08) 1002

Process E
started.

Used to
turn off

process D.

0003 (SW4)

SNXT(09) 1003

STEP(08) 1003

Process C
reset.
Process D
started.

Process D

Process E

Address Instruction Operands

0000 LD 0001

0001 SNXT(09) 1000

0002 SNXT(09) 1002

0003 STEP(08) 1000

Address Instruction Operands

0100 LD 0002

0101 SNXT(09) 1001

0102 STEP(08) 1001

Address Instruction Operands

0300 LD 0003

0301 SNXT(09) 1003

0302 STEP(08) 1003

Address Instruction Operands

0401 STEP(08) 1004

Address Instruction Operands

0500 LD 0005

0501 SNXT(09) 1005

0502 STEP(08)

Address Instruction Operands

Step Instructions Section 5-18

135

5-19 Special Instructions
The following instructions provide for special purposes: refreshing I/O bits
during program execution, designating minimum cycle time, and inserting
comments into a program.

5-19-1 I/O REFRESH – IORF(97)

St : Starting word

IR (00 through 09)

Ladder Symbol

E : End word

IR (00 through 09)

Operand Data Areas

IORF(97)

St

E

IORF can be used for refreshing I/O words allocated on the CPU or an Ex-
pansion I/O Rack only. It cannot be used for other I/O words. St must be less
than or equal to E.

When the execution condition is OFF, IORF(97) is not executed and the next
instruction is moved to. When the execution condition is ON, all words be-
tween St and E will be refreshed. This will be in addition to the normal I/O
refresh performed during the PC’s cycle.

The execution time for IORF(97), TIORF, is computed as follows:
TIORF = 40 µs + (74 µs x number of words refreshed)

There are no flags affected by this instruction.

5-19-2 END WAIT – ENDW(62)

Ml : Multiplier (BCD)

#

Ladder Symbol Operand Data Areas

ENDW(62)

Ml

ENDW(62) can be used to specify a minimum cycle time for the PC. When
the execution condition is OFF, ENDW(62) is not executed and the next in-
struction is moved to. When the execution condition is ON, the CPU will wait
at the end of program execution until the cycle time reaches 100 µs X Ml be-
ginning the next cycle. If program execution requires less that the minimum
time set, a wait will be inserted immediately after execution of END(01).

If the minimum cycle time set with ENDW(62) is exceeded by normal pro-
gram execution, the cycle will continue as normal. If more than one
ENDW(62) is written into the program, only the last one will be effective.

The accuracy of TIMH(15) may be affected if Ml is greater than 10. The accu-
racy of TIM and the response speed of the Programming Console may be
affected if Ml is set to greater than 1,000.

The cycle time set with ENDW(62) is accurate to plus or minus 0.05 ms.

There are no flags affected by this instruction.

Limitations

Description

Execution Time

Flags

Description

Flags

Special Instructions Section 5-19

136

5-19-3 NOTATION INSERT – NETW(63)

C1 : Comment 1 (Hex)

#

C2 : Comment 2 (Hex)

#

Ladder Symbol Operand Data Areas

NETW(63)

C1

C2

NETW(63) is not executed regardless of its execution condition. It is provided
so that the programmer can leave comments in the program. The operands
may be any hexadecimal value from 0000 through FFFF.

There are no flags affected by this instruction.

Description

Flags

Special Instructions Section 5-19

137

SECTION 6
Program Execution Timing

6-1 Introduction 138.
6-2 Cycle Time 139.
6-3 Calculating Cycle Time 141.

6-3-1 Single PC Unit 141.
6-3-2 PC with Additional Units 142.

6-4 Instruction Execution Times 143.
6-5 I/O Response Time 145.

138

6-1 Introduction
When writing and debugging a program, the timing of various operations
must be considered. Not only is the time required to execute the program
and perform other CPU operations important, but also the timing of each sig-
nal coming into and leaving the PC must be such that the desired control ac-
tion is achieved at the right time.

The major factors in determining program timing are the cycle time and the
I/O response time. One cycle of CPU operation is called a cycle; the time
required for one cycle is called the cycle time. The time required to produce a
control output signal following reception of an input signal is called the I/O
response time. This section explains the cycle and shows how to calculate
the cycle time and I/O response time.

Introduction Section 6-1

139

6-2 Cycle Time

To aid in PC operation, the average cycle time can be displayed on the Pro-
gramming Console or any other Programming Device. Understanding the
operations that occur during the cycle and the elements that affect cycle time
is essential to effective programming and PC operations.

The overall flow of CPU operation is as shown in the following flowchart.

YES

NO

Power application

Clears IR area and
resets all timers

Checks I/O Unit
connections

Resets watchdog
timer

Checks hardware and
Program Memory

Check OK?

Resets watchdog timer

Services Peripheral
Devices

ERROR or ALARM

Sets error flags and
lights indicator

Executes program

Input and output
refreshing

ERROR

ALARM

Resets watchdog timer

C
yc

le
 ti

m
e

of
 P

C

Cycle Time Section 6-2

140

The first three operations immediately after power application are performed
once each time the PC is turned on. The then on the operations shown
above are performed in cyclic fashion, with each cycle forming one cycle.
The cycle time is the time that is required for the CPU to complete one of
these cycles. This cycle includes four types of operation.

1. Overseeing
2. Input/Output refreshing
3. Peripheral Device servicing
4. Instruction execution

Cycle time = Overseeing time + Input/output refreshing + Peripheral
Device servicing time + Instruction execution time

1 Overseeing Watchdog timer set and program memory
and I/O bus checked.

1.6 ms (Fixed)

2 Peripheral Device
servicing

Commands from Program Devices and
Interface Units processed.

T = (1 + 3 + 4) x 0.05.
T <= 1, execution time = 1 ms.
T > 1, round off in units of 0.5 ms
(e.g.,1.65 ms rounds to 1.5 ms)
No peripherals connected = 0 ms.

3 Instruction
 execution

Instructions executed. Total of execution time for each instruction.
Varies with program size, the instructions
used, and execution conditions. Refer to
6-4 Instruction Execution Times for details.

4 Input refreshing
Output refreshing

Reading data input from input terminals
and writing the results of instruction
execution to output terminals.

0.51 ms + 0.03 ms times N where N =
number of input and output words – 2.

The cycle time can be obtained by adding the four cycle time components
identified above. An adequately short cycle time is important to ensure effi-
cient, error-free operation.

Within the PC, the watchdog timer measures the cycle time and compares it
to a set value. If the cycle time exceeds the set value of the watchdog timer,
an error is generated and the CPU stops.

Even if the cycle time does not exceed the set value of the watchdog timer, a
long cycle time can adversely affect the accuracy of system operations as
shown in the following table.

Cycle time (ms) Possible adverse affects

10 or greater TIMH(15) becomes inaccurate.

100 or greater 0.1-second clock pulse generator SR 1900 may
malfunction.

Between
100 and 130

ALARM indicator on the CPU lights and SR 1809 turns ON.

130 or greater ERROR indicator on the CPU lights and the system halts.

1, 2, 3...

Watchdog Timer and Long
Cycle Times

Cycle Time Section 6-2

141

6-3 Calculating Cycle Time

The PC configuration, the program, and program execution conditions must
be taken into consideration when calculating the cycle time. This means tak-
ing into account such things as the number of I/O points, the programming
instructions used, and whether or not Peripheral Devices are employed. This
subsection shows some basic cycle time calculation examples.

6-3-1 Single PC Unit
Configuration: A single C20K CPU.

Program: 300 addresses.

Instructions Used: LD and OUT.

The equation for the cycle time from above is as follows:

Cycle time = Overseeing time
+ Input/output refreshing
+ Peripheral device servicing time
+ Instruction execution time

The overseeing time is fixed at 1.6 ms.

The input/output refresh time would be as follows: 0.51 ms + (0.03 ms x N).
As the C20K is provided with only one input and one output word the value of
the constant N is 0 (i.e. N = 2 – 2 = 0) and so the time required is 0.51 ms + (
0.03 ms x 0) = 0.51 ms.

The execution time can be calculated by obtaining the average instruction
execution time and multiplying this by the number of addresses used in the
program. As only LD and OUT are used in this program and they have ex-
ecution times of 12 µs and 17.5 µs respectively, the average instruction ex-
ecution time is:

2

12 µs + 17.5 µs = 14.75 µs

The total execution time is equal to this average instruction execution time
multiplied by the number of program addresses.
Total execution time = 300 addresses x 14.75 µs = 4.43 ms

The peripheral device servicing time is calculated by adding the other three
time values and multiplying the result by a factor of 0.05. This value is only
required in configurations where a peripheral device is connected to the PC.
The result is calculated as an example. As there are no peripheral devices
used in this example the following results will be ignored in the final calcula-
tion.

Peripheral device servicing = (1.6 ms + 0.51 ms + 4.43 ms) x 0.05 = 0.3 ms
As this is less than 1 ms it must be rounded up to 1 ms. Had it been over 1
ms it would then need to be rounded down to the nearest 0.5 ms.

Calculations

Calculating Cycle Time Section 6-3

142

The cycle time is the total of all these calculations.

1.6 ms + 0.51 ms + 4.43 ms = 6.54 ms

If a peripheral device had been present it would have been:

1.6 ms + 0.51 ms + 4.43 ms + 1 ms = 7.54 ms

Process Formula Peripheral device servicing (ms)

With Without

1. Overseeing

2. Input/output refreshing

3. Peripheral device servicing

4. Instruction execution

Fixed

0.29 + 0.07 * (1–1)

((1) + (3) + (4)) * 0.05 = 0.3 < 1

14.75 * 300

1.6

0.51

1.00

4.43

1.6

0.51

0.00

4.43

Total (1) + (2) + (3) + (4) 7.54 6.54

6-3-2 PC with Additional Units
Configuration: A C40K CPU, a C40P Expansion I/O Unit, an I/O Link Unit.

Program: 1150 addresses.

Average instruction execution time: 30 µs.

The equation for the cycle time from above is as follows:

Cycle time = Overseeing time
+ Input/output refreshing
+ Peripheral device servicing time
+ Instruction execution time

The overseeing time is fixed at 1.6 ms.

The input/output refresh time would be as follows: 0.51 ms + (0.03 ms x N).
As the C40K is provided with only one input and one output word and the
C40P Expansion unit contains input and output words the value of the con-
stant N is 8. (i.e., N = 10 – 2 = 8) and so the time required is 0.51 ms + (0.03
ms x 8) = 0.75 ms.

The total execution time can be calculated by obtaining the average instruc-
tion execution time and multiplying this by the number of addresses used in
the program. As given above the average instruction execution time is 30 µs.

Total execution time = 1150 addresses x 30 µs = 34.50 ms

The peripheral device servicing time is calculated by adding the other three
time values and multiplying the result by a factor of 0.05. This value is only
required in configurations where a peripheral device is connected to the PC.
The result is calculated as an example. As there are no peripheral devices
used in this example the following results will be ignored in the final calcula-
tion.

Peripheral device servicing = (1.6 ms + 0.75 ms + 34.50 ms) x 0.05 =
1.84 ms which is rounded down to 1.50 ms.

Calculations

Calculating Cycle Time Section 6-3

143

The cycle time is the total of all these calculations.
1.6 ms + 0.75 ms + 34.50 ms = 36.85 ms

If a peripheral device had been present it would have been:
1.6 ms + 0.75 ms + 34.50 ms + 1.50 ms = 38.35 ms

Process Formula Peripheral device servicing (ms)

With Without

1. Overseeing

2. Input/output refreshing

3. Peripheral device servicing

4. Instruction execution

Fixed

0.29 + 0.07 * (1–1)

((1) + (2) + (4)) * 0.05 = 1.8 >1

30 * 1150

1.6

0.75

1.50

34.50

1.6

0.75

0.00

34.50

Total (1) + (2) + (3) + (4) 38.35 36.85

6-4 Instruction Execution Times
This following table lists the execution times for all instructions that are avail-
able for the K-types. The maximum and minimum execution times and the
conditions which cause them are given where relevant.

Execution times for most instructions depend on whether they are executed
with an ON or an OFF execution condition. The OFF execution time for an
instruction can also vary depending on the circumstances, i.e., whether it is
in an interlocked program section and the execution condition for IL is OFF,
whether it is between JMP(04) 00 and JME(05) 00 and the execution condi-
tion for JMP(04) 00 is OFF, or whether it is reset by an OFF execution condi-
tion. “R,” “IL,” and “JMP” are used to indicate these three times.

Execution times are expressed in microseconds except where noted.

Function
code

Instruction Execution
time(µs)

Conditions

--- LD 12 Always

LD NOT 12 Always

AND 11.5 Always

AND NOT 11.5 Always

OR 11.5 Always

OR NOT 11.5 Always

AND LD 4 Always

OR LD 4 Always

OUT 17 When outputting logical “1” (ON)

17.5 When outputting logical “0” (OFF)

OUT NOT 19 When outputting logical “1” (ON)

17.5 When outputting logical “0” (OFF)

TIM 95 When timing

95.5 to 186.5 When reset

CNT 80.5 When counting

91.5 TO 184 When reset

00 NOP 2 Always

01 END — Refer to Cycle Time Calculation Example.

02 IL 2.5 Always

03 ILC 3 Always

04 JMP 94 Always

05 JME 38 Always

08 STEP 60 to 127 Always

Instruction Execution Times Section 6-4

144

Function
code

ConditionsExecution
time(µs)

Instruction

09 SNXT 100 Always

10 SFT 102 When shifting 1 word

248 When shifting 13 words

90 to 254 When reset (1 to 13 words)

11 KEEP 19 When set

20 When reset

12 CNTR 95 When counting DOWN

190.5 When counting UP (word specified)

13 DIFU 60.5 When input = 1

56.5 When input = 0

14 DIFD 59 When input = 1

62.5 When input = 0

15 TIMH 94.5 When timing

97 to 187.5 When reset

16 WSFT 97 When shifting DM by 1 word

825.5 When shifting DM by 64 words

20 CMP 121.5 When comparing a constant with word data

212 When comparing a TIM/CNT with word data

21 MOV 109 When transferring a constant to a word

196 When transferring a TIM/CNT to a word

22 MVN 108.5 When inverting & transferring a constant to a word

196 When inverting & transferring a TIM/CNT to a word

23 BIN 115 When converting & transferring a TIM/CNT to a word

193.5 When converting & transferring a word to a word

24 BCD 194 When converting & transferring DM to DM

202.5 When converting & transferring data in other areas

30 ADD 233 When adding two words

352 When adding a TIM/CNT to a constant

31 SUB 237.5 When subtracting a word from a word

356.5 When subtracting a constant from a TIM/CNT

32 MUL 655 When multiplying a DM word by a DM word

33 DIV 572 When dividing a DM word by a DM word

40 STC 16 Always

41 CLC 16 Always

60 RDM 695 At reset

61 HDM 734 Always

62 ENDW 197 With DM word

63 NETW 58 Always

76 MLPX 212.5 Word, 1 digit (constant) —> word

288 Word, 4 digits (constant) —> word

355 TIM/CNT, 1 digit (TIM/CNT) —> word

431 TIM/CNT, 4 digits (TIM/CNT) —> word

77 DMPX 298.5 Word, 1 digit (constant) —> word

658.5 Word, 4 digits (constant) —> word

456 TIM/CNT, 1 digit (TIM/CNT) —> word

1,080 TIM/CNT, 4 digits (TIM/CNT) —> word

145 When shifting one word

743 When shifting 64 DM words

Instruction Execution Times Section 6-4

145

Function
code

ConditionsExecution
time(µs)

Instruction

84 SFTR 136 to 668 When resetting 1 to 64 DM words

44 NOP

42 IL

91 SBS 75 Always

92 SBN 26 Always

93 RET 49 Always

97 IORF 108 When refreshing 1 word

6-5 I/O Response Time
The I/O response time is the time it takes for the PC to output a control signal
after it has received an input signal. How long it takes to respond depends on
the cycle time and when the CPU receives the input signal relative to the in-
put refresh period. The I/O response times for a PC not in a Link System are
discussed below. For response times for PCs with Link Systems, refer to the
relevant System Manual.

The minimum and maximum I/O response time calculations described below
are for the following, where 0000 is the input bit that receives the signal and
0200 is the output bit corresponding to the desired output point.

0000

0200

The PC responds most quickly when it receives an input signal just prior to
the input refresh period in the cycle. Once the input bit corresponding to the
signal has been turned ON, the program will have to be executed once to
turn ON the output bit for the desired output signal and then the input refresh
and overseeing operations would have to be repeated before the output from
the output bit was refreshed. The I/O response time in this case is thus found
by adding the input ON-delay time, the cycle time, the I/O refresh time, the
overseeing time, and the output ON-delay time. This situation is illustrated
below.

Cycle time

Input
signal

Output
signal

Cycle

Cycle time

I/O refresh

Overseeing

I/O response time

CPU reads
input signal

CPU writes
output signal

Output ON delayInput ON delay

Minimum I/O response time = Input ON delay + Cycle time + I/O refresh time
+ Overseeing time + Output ON delay

Minimum I/O Response
Time

I/O Response Time Section 6-5

146

The PC takes longest to respond when it receives the input signal just after
the input refresh phase of the cycle. In this case the CPU does not recognize
the input signal until the end of the next cycle. The maximum response time
is thus one cycle longer than the minimum I/O response time, except that the
input refresh time would not need to be added in because the input comes
just after it rather than before it.

Input
signal

Output
signal

Cycle

Cycle time

I/O refresh

I/O response time

CPU reads
input signal

CPU writes
output signal

Output ON delayInput ON delay

Overseeing

Cycle time

Maximum I/O response time = input ON delay + (cycle time x 2) + overseeing
time + output ON delay

The data in the following table would produce the minimum and maximum
cycle times shown calculated below.

Input ON-delay 1.5 ms

Cycle time 20 ms

Input refresh time 0.23 ms

Overseeing time 3.0 ms

Output ON-delay 15 ms

Minimum I/O response time = 1.5 + 20 + 0.23 + 3.0 +15 = 39.73 ms

Maximum I/O response time = 1.5 + (20 x 2) + 3.0 +15 = 59.5 ms

Maximum I/O Response
Time

Calculation Example

I/O Response Time Section 6-5

147

SECTION 7
Program Debugging and Execution

7-1 Introduction 148.
7-2 Debugging 148.
7-3 Monitoring Operation and Modifying Data 149.

7-3-1 Bit/Digit Monitor 150.
7-3-2 Force Set/Reset 153.
7-3-3 Hexadecimal/BCD Data Modification 155.
7-3-4 Changing Timer/Counter SV 156.

7-4 Program Backup and Restore Operations 157.
7-4-1 Saving Program Memory Data 158.
7-4-2 Restoring or Comparing Program Memory Data 159.

148

7-1 Introduction

This section provides the procedures for inputting and debugging a program
and monitoring and controlling the PC through a Programming Console. The
Programming Console is the most commonly used Programming Device for
the K-type PCs. It is compact and available both in hand-held models or
CPU-mounted models. Refer to Appendix A Standard Models for model num-
bers and other details.

If you are using a GPC, FIT, or a computer running LSS, refer to the Opera-
tion Manual for corresponding procedures on these. If you are going to use a
GPC, FIT, or a computer running LSS, but want to input in mnemonic code
rather than in ladder diagram form, refer to 4-3-2 Mnemonic Code.

7-2 Debugging

After inputting a program and correcting it for syntax errors, it must be exe-
cuted and all execution errors must be eliminated. Execution errors include
an excessively long cycle time, errors in settings for various Units in the PC,
and inappropriate control actions, i.e., the program not doing what it is de-
signed to do.

When necessary, the program can first be executed isolated from the actual
control system and wired to artificial inputs and outputs to check for certain
types of errors before actual trial operation with the controlled system.

When an error occurs during program execution, it can be displayed for iden-
tification by pressing CLR, FUN, and then MONTR. If an error message is
displayed, the MONTR key can be press to access any other error messages
that are stored by the system in memory. If MONTR is pressed in PROGRAM
mode, the error message will be cleared from memory; be sure to write down
the error message when required before pressing MONTR. OK will be dis-
played when the last message has been cleared.

If a beeper sounds and the error cannot be cleared by pressing MONTR, the
cause of the error still exists and must be eliminated before the error mes-
sage can be cleared. If this happens, take the appropriate corrective action to
eliminate the error. Refer to Section 8 Troubleshooting for all details on all
error messages. The sequence in which error messages are displayed de-
pends on the priority levels of the errors. The messages for fatal errors (i.e.,
those that stop PC operation) are displayed before non-fatal ones.

Although error messages can be displayed in any mode, they can be cleared
only in PROGRAM mode. There is no way to restart the PC following a fatal
error without first clearing the error message in PROGRAM mode.

Displaying and Clearing
Error Messages

Key Sequence

Debugging Section 7-2

149

The following displays show some of the messages that may appear. Refer
to Section 8 Troubleshooting for an inclusive list of error messages, mean-
ings, and appropriate responses.

Note Cycle time is displayed as scan time.

Fatal
errors

Non-fatal
errors

All errors
have been
cleared

0000

0000
FUN (??)

0000ERR CHK
OK

MEMORY ERR

NO END INST

I/O BUS ERR

BATT LOW

SCAN TIME OVER

0000ERR CHK
OK

7-3 Monitoring Operation and Modifying Data
The simplest form of operation monitoring is to display the address whose
operand bit status is to be monitored using the Program Read or one of the
search operations. As long as the operation is performed in RUN or MONI-
TOR mode, the status of any bit displayed will be indicated.

This section provides other procedures for monitoring data as well as proce-
dures for modifying data that already exists in a data area. Data that can be
modified includes the PV (present value) and SV (set value) for any timer or
counter.

All monitor operations in this section can be performed in RUN, MONITOR,
or PROGRAM mode and can be cancelled by pressing the CLR key.

All data modification operations except for timer/counter SV changes are per-
formed after first performing one of the monitor operations. Data modification
is possible in either MONITOR or PROGRAM mode, but cannot be per-
formed in RUN mode.

Example

Monitoring Operation and Modifying Data Section 7-3

150

7-3-1 Bit/Digit Monitor
The status of any bit or word in any data area can be monitored using the
following operation. Although the operation is possible in any mode, ON/OFF
status displays will be provided for bits only in MONITOR or RUN mode.

The Bit/Digit Monitor operation can be entered either from a cleared display
by designating the first bit or word to be monitored or it can be entered from
any address in the program by displaying the bit or word address whose
status is to be monitored and pressing MONTR.

When a bit is monitored, it’s ON/OFF status will be displayed (in MONITOR
or RUN mode); when a word address is designated other than a timer or
counter, the digit contents of the word will be displayed; and when a timer or
counter number is designated, the PV of the timer will be displayed and a
small box will appear if the timer or counter’s completion flag is ON. The
status of TR bits and SR flags cleared when END(01) is executed (e.g., the
arithmetic flags) cannot be monitored.

Up to six memory addresses, either bits, words, or a combination of both,
can be monitored at once, although only three of these are displayed at any
one time. To monitor more than one address, return to the start of the proce-
dure and continue designating addresses. Monitoring of all designated ad-
dresses will be maintained unless more than six addresses are designated. If
more than six addresses are designated, the leftmost address of those being
monitored will be cancelled.

To display addresses that are being monitored but are not presently on the
Programming Console display, press MONTR without designating another
address. The addresses being monitored will be shifted to the right. As
MONTR is pressed, the addresses being monitored will continue shifting to
the right until the rightmost address is shifted back onto the display from the
left.

During a monitor operation the up and down keys can be pressed to incre-
ment and decrement the leftmost address on the display and CLR can be
pressed to cancel monitoring the leftmost address on the display. If the last
address is cancelled, the monitor operation will be cancelled. The monitor
operation can also be cancelled regardless of the number of addresses being
monitored by pressing SHIFT and then CLR.

LD and OUT can be used only to designate the first address to be displayed;
they cannot be used when an address is already being monitored.

Monitoring Operation and Modifying Data Section 7-3

151

The following examples show various applications of this monitor operation.

Program Read then Monitor

Indicates Completion flag is ON

Monitor operation
is cancelled

0100

0100READ
TIM 00

 T00
 1234

 T00
!0000

0100
TIM 01

Key Sequence

Examples

Monitoring Operation and Modifying Data Section 7-3

152

Bit Monitor

0000

0000
LD 0001

 0001
 ON

0000
CONT 0001

Word Monitor

0000

0000
CHANNEL 00

0000
CHANNEL HR 1

 cH1
 FFFF

 cH0
 0000

Monitoring Operation and Modifying Data Section 7-3

153

Multiple Address Monitoring

0000

0000
TIM 00

 T00
 0100

 0000 T00
 0100

 0001 T00
 0100

 0001 T00
 OFF 0100

 D00 0001 T00
 OFF 0100

 D00 0001 T00
 10FF OFF 0100

 T00 D00 0001
 0100 10FF OFF

 D00 0001
 10FF^ OFF

 0001
 OFF

0000
CONT 0001

0000
CHANNEL DM 00

Cancels monitoring of
leftmost address

Cancels Monitor
operation

7-3-2 Force Set/Reset
When the Bit/Digit Monitor operation is being performed and a bit, timer, or
counter address is leftmost on the display, PLAY/SET can be pressed to turn
ON the bit, start the timer, or increment the counter and REC/RESET can be
pressed to turn OFF the bit or reset the timer or counter. Timers will not oper-
ate in PROGRAM mode. SR bits cannot be turned ON and OFF with this op-
eration.

Bit status will remain ON or OFF for only one scan after pressing the key; it
will then return to its original status. When timers or counters are reset in
MONITOR mode, they will start after one scan.

This operation can be used in MONITOR mode to check wiring of outputs
from the PC prior to actual program execution. This operation cannot be
used in RUN mode.

Monitoring Operation and Modifying Data Section 7-3

154

Key Sequence

The following example shows how either bits or timers can be controlled with
the Force Set/Reset operation. The displays shown below are for the follow-
ing program section.

0200 LD 0002

0201 TIM 00

0123

0202 LD TIM 00

0203 OR 0501

0204 AND NOT 0003

0205 OUT 0501

TIM 00

SV

0002

TIM 00

0501

0501

0003

Address Instruction Operands

Example

Monitoring Operation and Modifying Data Section 7-3

155

The following displays show what happens when TIM 00 is set with 0100
OFF (i.e., 0500 is turned ON) and what happens when TIM 00 is reset with
0100 ON (i.e., timer starts operation, turning OFF 0500, which is turned back
ON when the timer has finished counting down the SV).

Indicates
that the
time is up

Returns to the
original condition
after a scan

The timer
commences after
the first scan

OUT 0501 is ON
after the timer has
reached its SV

0000
OUT 0501

 0501
 OFF

 0501
 ON

 0501
 OFF

 T00 0501
 OFF

 T00 0501
 0123 OFF

 T00 0501
!0000 ON

 T00 0501
 0123 OFF

 T00 0501
!0000 ON

 T00 0501
 0123 OFF

 T00 0501
 0122 OFF

 T00 0501
!0000 ON

0000

0000
OUT 0500

7-3-3 Hexadecimal/BCD Data Modification
When the Bit/Digit Monitor operation is being performed and a BCD or hexa-
decimal value is leftmost on the display, CHG can be input to change the
value. SR words cannot be changed.

If a timer or counter is leftmost on the display, the PV will be displayed and
will be the value changed. See 7-3-4 Changing Timer/Counter SV for the pro-
cedure to change SV. PV can be changed in MONITOR mode and only when
the timer or counter is operating.

Monitoring Operation and Modifying Data Section 7-3

156

To change contents of the leftmost word address, press CHG, input the de-
sired value, and press WRITE.

Key Sequence

The following example shows the effects of changing the PV of a timer.

This example is in MONITOR mode

Timing

Timing

PV changed

Timing

Timing

0000

0000
TIM 00

 T00
 0122

0000PRES VAL?
 T00 0119 ????

0000PRES VAL?
 T00 0100 0200

 T00
 0199

7-3-4 Changing Timer/Counter SV
The SV of a timer or counter can be changed by inputting a new value nu-
merically when in MONITOR mode. The SV can be changed while the pro-
gram is being executed.

To change the SV, first display the address of the timer or counter whose SV
is to be changed, press the down key, and then press CHG. The new value
can then be input numerically and WRITE pressed to change the SV.

When changing the SV of timers or counters while operation is stopped, use
PROGRAM mode and follow the procedure outlined in 4-6-2 Inputting or
Overwriting Programs.

This operation can be used to change a SV from designation as a constant to
a word address designation or from a word address to a constant designa-
tion.

Example

Monitoring Operation and Modifying Data Section 7-3

157

Key Sequence

The following example shows inputting a new constant and changing from a
constant to a word designation.

Inputting New SV

0000

0000
TIM 00

0201SRCH
TIM 00

0201 TIM DATA
 #0123

0201 TIM DATA
T00 #0123 #????

0201 TIM DATA
T00 #0123 #0124

0201 TIM DATA
 #0124

0201 DATA?
T00 #0123 c???

0201 DATA?
T00 #0123 c 10

0201 TIM DATA
 10

7-4 Program Backup and Restore Operations
Program Memory (UM) can be backed-up on a standard commercially avail-
able cassette tape recorder. Any kind of dependable magnetic tape of ade-
quate length will suffice. To save a 16K-word program, the tape must be 30
minutes long. Always allow about 5 seconds of blank tape leader before the
taped data begins. Store only one program on a single side of a tape; there is
no way to identify separate programs stored on the same side of the tape. If
a program is longer than will fit on one side, it can be split onto two sides.

Be sure to label the contents of all cassette tapes clearly.

Use patch cords to connect the cassette recorder earphone (or LINE-OUT)
jack to the Programming Console EAR jack and the cassette recorder micro-
phone (or LINE-IN) jack to the Programming Console MIC jack. Set the cas-
sette recorder volume and tone controls to maximum levels.

Example

Program Backup and Restore Operations Section 7-4

158

The PC must be in PROGRAM mode for all cassette tape operations.

While the operation is in progress, the cursor will blink and the block count
will be incremented on the display.

Cassette tape operations may be halted at any time by pressing the CLR key.

The following error messages may appear during cassette tape operations.

Message Meaning and appropriate response

0000 ERR ******* File number on cassette and designated file number are
FILE NO.******** not the same. Repeat the operation using the correct file

number.

**** MT VER ERR Cassette tape contents differs from that in the PC. Check
content of tape and/or the PC.

**** MT ERR Cassette tape is faulty. Replace it with another.

7-4-1 Saving Program Memory Data
This operation is used to copy the content of Program Memory to a cassette
tape. The procedure is as follows:

Press EXT.
Input a file number for the data that is to be saved.
Start cassette tape recording.
Within 5 seconds, press the SHIFT and REC/RESET keys.

Program saving continues until END(01) or the final address is reached.
Cancel by pressing the CLR key.

Key Sequence

Error Messages

1, 2, 3...

Program Backup and Restore Operations Section 7-4

159

Example

0000

0000MT
FILE NO!00000012

0000MT
FILE NO!00000000

Blinking

Continue within 5 seconds

Recording in progress

When it comes to END

Stop recording with CLR

Saved up to stop address

Start recording

0000MT RECORD ~
FILE NO!00000012

0075MT RECORD ~
FILE NO!00000012

0145MT RECORD ~
END (01)

0145MT DISCONTD
END (01) (0100)

1193RECORD END
END (01) (0497)

7-4-2 Restoring or Comparing Program Memory Data

This operation is used to restore Program Memory data from a cassette tape
or to compare Program Memory data with the contents on a cassette tape.
The procedure is as follows:

Press EXT.
Specify the number of the file to be restored or compared.
Start playing the cassette tape.
Within 5 seconds, press SHIFT and PLAY/SET to restore data or VER to
compare data.

Program restoration or comparison continues until the final address or
END(01) is reached or until the tape is finished. Cancel by pressing the CLR
key.

To restore or compare program data recorded on two sides of a tape or on
two or more tapes, begin restoring or comparing from the lowest address.

1, 2, 3...

Program Backup and Restore Operations Section 7-4

160

Key Sequence

Example

Restoring in progress

END reached

Restored up to END

Comparison in progress

END reached

Stop comparison using CLR

Compared up to end of tape

0000MT PLAY ~
FILE NO!00000012

0242MT PLAY ~
FILE NO!00000012

0480MT RECORD ~
END (01)

1193MT DISCONTD
END (01) (0100)

0145 RECORD END
END (01) (0100)

0034MT PLAY ~
FILE NO!00000012

0242MT PLAY ~
FILE NO!00000012

0486MT RECORD ~
END (01)

0480MT DISCONTD
END (01)

0578 RECORD END
END (01)

0000

0000MT
FILE NO!00000012

0000MT
FILE NO!00000000

Stop restoring using CLR

Program Backup and Restore Operations Section 7-4

161

SECTION 8
Troubleshooting

8-1 Introduction 162.
8-2 Reading and Clearing Errors and Messages 162.
8-3 Error Messages 162.
8-4 Error Flags 164.

!

162

8-1 Introduction
The K-type PCs provide self-diagnostic functions to identify many types of
abnormal system conditions. These functions minimize downtime and enable
quick, smooth error correction.

This section provides information on hardware and software errors that occur
during PC operation. Program input and program syntax errors are described
in Section 4 Writing and Inputting the Program. Although described in Section
3 Memory Areas, flags and other error information provided in SR areas are
listed in 8-4 Error Flags.

There are two indicators on the front of the CPU that provide visual indication
of an abnormality in the PC. The error indicator (ERR) indicates fatal errors
(i.e., ones that will stop PC operation); the alarm indicator (ALARM) indicates
nonfatal ones. These indicators are shown in 2-2 Indicators.

 DANGER The PC will turn ON the error indicator (ERR), stop program execution, and turn
OFF all outputs from the PC for most hardware errors, or certain fatal software
errors. PC operation will continue for all other errors. It is the user’s responsibility
to take adequate measures to ensure that a hazardous situation will not result
from automatic system shutdown for fatal errors and to ensure that proper
actions are taken for errors for which the system is not automatically shut down.
System flags and other system and/or user-programmed error indications can
be used to program proper actions.

8-2 Reading and Clearing Errors and Messages
System error messages can be displayed on the Programming Console or
any other Programming Device.

On the Programming Console, press the CLR, FUN, and MONTR keys. If
there are multiple error messages stored by the system, the MONTR key can
be pressed again to access the next message. If the system is in PROGRAM
mode, pressing the MONTR key will clear the error message, so be sure to
write down all message errors as you read them out. (It is not possible to
clear an error or a message while in RUN or MONITOR mode; the PC must
be in PROGRAM mode.) When all messages have been cleared, “ERR CHK
OK” will be displayed.

Details on accessing error messages from the Programming Console are
provided in 7-3 Monitoring Operation and Modifying Data. Procedures for the
GPC, LSS, and FIT are provided in the relevant Operation Manual.

8-3 Error Messages
There are basically two types of errors for which messages are displayed:
non-fatal operating errors, and fatal operating errors.

The type of error can be quickly determined from the indicators on the CPU,
as described below for the two types of errors. If the status of an indicator is
not mentioned, it makes no difference whether it is lit or not.

After eliminating the cause of an error, clear the error message from memory
before resuming operation.

Error Messages Section 8-3

163

The following error messages appear for errors that occur after program exe-

cution has been started. PC operation and program execution will continue

after one or more of these error have occurred. The POWER, RUN, and

ALARM indicators will be lit and the ERR indicator will not be lit for any of

these errors. The RUN output will be ON.

Error and message Probable cause Possible correction

Cycle time overrun

SCAN TIME OVER

Watchdog timer has exceeded 100
ms.

Program cycle time is longer then
desirable. Reduce cycle time if
possible.

Battery error

BATT LOW

Backup battery is missing or it’s
voltage has dropped.

Check battery and replace if
necessary.

The following error messages appear for errors that occur after program exe-

cution has been started. PC operation and program execution will stop and

all outputs from the PC will be turned OFF when any of the following errors

occur. All CPU indicators will not be lit for the power interruption error. For all

other fatal operating errors, the POWER, and ERR indicators will be lit and

the RUN indicator will not be lit. The RUN output will be OFF.

Error and message Probable cause Possible correction

Power interruption

No message

Power has been interrupted for at
least 10 ms.

Check power supply voltage and
power lines. Try to power-up again.

CPU error

No message

Watchdog timer has exceeded
maximum setting (default setting: 130
ms).

Restart system in PROGRAM mode
and check program. Reduce cycle
time or reset watchdog timer if longer
time required. (Consider effects of
longer cycle time before resetting).

Memory error

MEMORY ERR

Memory Unit is incorrectly mounted or
missing or parity error has occurred.

Check Memory Unit to make sure it is
mounted and backed up properly.
Perform a Program Check Operation
to locate cause of error. If error not
correctable, try inputting program
again.

No END(01) instruction

NO END INST

END(01) is not written anywhere in
program.

Write END(01) at the final address of
the program.

I/O bus error

I/O BUS ERR

Error has occurred in the bus line
between the CPU and Units.

Check the CPU Left/Right selector
switch on the Expansion I/O Unit.
Check cable connections between the
Units and Racks.

Non-fatal Operating Errors

Fatal Operating Errors

Error Messages Section 8-3

164

8-4 Error Flags
The following table lists the flags and other information provided in the SR
area that can be used in troubleshooting. Details are provided in 3-4 Special
Relay (SR) Area.

SR Area
Address Function

1808 Battery Alarm Flag

1809 Cycle Time Error Flag

1903 Instruction Execution Error (ER) Flag

A number of other error messages are detailed within this manual. Errors in
program input and debugging can be examined in 4-6-2 Inputting and Over-
writing Programs and 4-6-3 Checking the Program and errors in cassette
tape operation are detailed in 7-4 Program Backup and Restore Operations.

Other Error Messages

Error Flags Section 8-4

165

Appendix A
Standard Models

There are four K-type C-series CPUs. A CPU can be combined with any of six types of Expansion I/O Unit
and/or an Analog Timer, Analog I/O Unit, or I/O Link Unit.

CPUs Expansion I/O Units Analog Timer Unit

Analog I/O Units

I/O Link Unit

C20K-Cjj-j

C28K-Cjj-j

C40K-Cjj-j

C60K-Cjj-j

C4K-Ij/Ojj C4K-TM

C16P-Ij-j/Oj-j

C20P-Ejj-j

C28P-Ejj-j

C40P-Ejj-j

C60P-Ejj-j

C1K-AD/DA

C4K-AD

C4K-CN502
(included with Unit)

To order
cable sepa-
rately, specify
C4K-CN502

5 cm or 40 cm
One included
with each Ex-
pansion I/O
Unit.

Cable (70 cm)
C20P-CN711
(ordered separately)

C20-LK011/LK011-P

C20P

C28P

C40P

C60P

C20P

C28P

C16P

C60P

C40P

C4K - AD

Standard Models Appendix A

166

CPUs
Name Power supply Inputs Outputs Model number Standards

C20K 100 to 240 VAC 24 VDC, 12 pts Relay w/socket 8 pts C20K-CDR-A U, C

Transistor, 1 A C20K-CDT1-A U, C

Triac, 1 A C20K-CDS1-A U, C

24 VDC, 2 pts Relay w/socket C20K-CAR-A U, C, N, L

100 to 120 VAC,
10 pts

Triac, 1A C20K-CAS1-A U, C

24 VDC 24 VDC, 12 pts Relay w/socket C20K-CDR-D U, C

Transistor, 1 A C20K-CDT1-D U

C28K 100 to 240 VAC 24 VDC, 16 pts Relay w/socket 12 pts C28K-CDR-A U, C

Transistor, 1 A C28K-CDT1-A U, C

Triac, 1 A C28K-CDS1-A U, C

24 VDC, 2 pts Relay w/socket C28K-CAR-A U, C

100 to 120 VAC,
14 pts

Triac, 1A C28K-CAS1-A U, C

24 VDC 24 VDC, 16 pts Relay w/socket C40K-CDR-D U, C

Transistor, 1 A C28K-CDT1-D U, C

C40K 100 to 240 VAC 24 VDC, 16 pts Relay w/socket 16 pts C40K-CDR-A U, C

Transistor, 1 A C40K-CDT1-A U, C

Triac, 1 A C40K-CDS1-A U, C

24 VDC, 2 pts Relay w/socket C40K-CAR-A U, C

100 VAC, 22 pts Triac, 1 A C40K-CAS1-A U, C

24 VDC 24 VDC, 24 pts Relay w/socket C40K-CDR-D U, C

Transistor, 1 A C40K-CDT1-D U, C

C60K 100 to 240 VAC 24 VDC, 32 pts Relay w/socket 28 pts C60K-CDR-A U, C

Transistor, 1 A C60K-CDT1-A U, C

Triac, 1 A C60K-CDS1-A U, C

24 VDC, 2 pts Relay w/socket C60K-CAR-A U, C

100 VAC, 30 pts Triac, 1 A C60K-CAS1-A U, C

24 VDC 24 VDC, 32 pts Relay w/socket C60K-CDR-D U, C

Transistor, 1 A C60K-CDT1-D ---

• U: UL, C: CSA, N: NK, L: LLOYD
See Omron sales representatives concerning operating conditions under which UL, CSA, and NK standards were met (Aug. 1991).

Appendix AStandard Models

167

I/O Units
Name Power Supply Inputs Outputs Model number Standards

C4K I/O Unit --- 24 VDC, 4 pts --- C4K-ID U, C
100 to 120 VAC,
4 pts

--- C4K-IA U, C

--- Relay w/socket 4 pts C4K-OR2 U, C
Transistor, 1 A C4K-OT2 U, C
Triac, 1A C4K-OS2 U, C

C16P I/O Unit 100 to 240 VAC 24 VDC, 16 pts --- C16P-ID-A U, C
--- Relay w/socket 16 pts C16P-OR-A U, C

Transistor, 1 A C16P-OT1-A U, C
Triac, 1A C16P-OS1-A U, C

--- 24 VDC, 16 pts --- C16P-ID U, C
100 to 120 VAC,
16 pts

--- C16P-IA U, C

24 VDC --- Relay w/socket 16 pts C16P-OR-D U, C
Transistor, 1 A C16P-OT1-D U

C20P I/O Unit 100 to 240 VAC 24 VDC, 12 pts Relay w/socket 8 pts C20P-EDR-A U, C, N, L
Transistor, 1 A C20P-EDT1-A U, C, N, L
Triac, 1A C20P-EDS1-A U, C, N, L

100 to 120 VAC, Relay w/socket C20P-EAR-A U, C, N, L
12 pts Triac, 1A C20P-EAS1-A U, C, N, L

24 VDC 24 VDC, 12 pts Relay w/socket C20P-EDR-D U, C, N, L
Transistor, 1 A C20P-EDT1-D U, C, N, L

C28P I/O Unit 100 to 240 VAC 24 VDC, 16 pts Relay w/socket 12 pts C28P-EDR-A U, C, N, L
Transistor, 1 A C28P-EDT1-A U, C, N, L
Triac, 1A C28P-EDS1-A U, C, N, L

100 to 120 VAC, Relay w/socket C28P-EAR-A U, C, N, L
16 pts Triac, 1A C28P-EAS1-A U, C, N, L

24 VDC 24 VDC, 16 pts Relay w/socket C28P-EDR-D U, C, N, L
Transistor, 1 A C28P-EDT1-D U, C, N, L

C40P I/O Unit 100 to 240 VAC 24 VDC, 24 pts Relay w/socket 16 pts C40P-EDR-A U, C, N, L
Transistor, 1 A C40P-EDT1-A U, C, N, L
Triac, 1A C40P-EDS1-A U, C, N, L

100 to 120 VAC, Relay w/socket C40P-EAR-A U, C, N, L
24 pts Triac, 1A C40P-EAS1-A U, C, N, L

24 VDC 24 VDC, 24 pts Relay w/socket C40P-EDR-D U, C, N, L
Transistor, 1 A C40P-EDT1-D U, C, N, L

C60P I/O Unit 100 to 240 VAC 24 VDC, 32 pts Relay w/socket 28 pts C60P-EDR-A U, C
Transistor, 1 A C60P-EDT1-A ---
Triac, 1A C60P-EDS1-A U, C

100 VAC, 32 pts Relay w/socket C60P-EAR-A U, C
Triac, 1A C60P-EAS1-A U, C

24 VDC 24 VDC, 32 pts Relay w/socket C60P-EDR-D U, C
Transistor, 1 A C60P-EDT1-D ---

Standard Models Appendix A

168

Special Units
Name Specifications Model number Standards

Analog Timer Unit Settings: 0.1 s to 10 min (one cable, C4K-CN502,
included)

C4K-TM U, C

Analog Timer External
Connector

2-m cable and connector C4K-CN223 ---

Analog Input Unit 1 input; input ranges: 4 to 20 mA, 1 to 5 V C1K-AD U, C

4 inputs; input ranges: 4 to 20 mA, 1 to 5 V C4K-AD U, C

Analog Output Unit 1 output; output ranges: 4 to 20 mA, 1 to 5 V C1K-DA U, C

Host Link Unit RS-232C C20/C20K/C28K/C40K/C60K 3G2C7-LK201-EV1 ---

RS-422 3G2C7-LK202-EV1 ---

I/O Link Unit APF/PCF C20-LK011-P U, C

PCF C20-LK011 U, C

I/O Connecting Cable For horizontal mounting; cable length: 5 cm
(for maintenance)

C20P-CN501 ---

For vertical mounting; cable length: 40 cm
(for maintenance)

C20P-CN411 ---

I/O Connecting Cable For horizontal mounting; connects Cable length: 5 cm C4K-CN502 ---

to C4K I/O, Analog Timer, or Ana- Cable length: 50
cm

C4K-CN512 ---

log I/O Units (for maintenance) Cable length: 1 m C4K-CN122 ---

I/O Link Connecting
Cable

Cable length: 70 cm; for I/O Link Units only C20P-CN711 ---

EPROM 2764 ROM-H L

Battery Set Built into CPU (same for all C-Series PCs) 3G2A9-BAT08 ---

Relay 24-VDC contact relay G6B-1174P-FD-US U, C

24-VDC transistor relay G3SD-Z01P-PD-US U, C

24-VDC triac relay G3S-201PL-PD-US U, C

• U: UL, C: CSA, N: NK, L: LLOYD
See Omron sales representatives concerning operating conditions under which UL, CSA, and NK standards were met (Aug. 1991).

Appendix AStandard Models

169

Mounting Rail and Accessories
Name Specifications Model number Standards

DIN Track Length: 50 cm Not usable with
C60K

PFP-50N

Length: 1 m PFP-100N ---

PFP-100N2

End Plate --- PFP-M

Spacer --- PFP-S

Factory Intelligent Terminal (FIT)
Name Specifications Model number Standards

FIT 1. FIT Computer
2. SYSMATE Ladder Pack (2 system disks, 1 data disk)
3. MS-DOS
4. GPC Communications Adapter (C500-IF001)
5. Peripheral Connecting Cable (3G2A2-CN221)
6. Power Cord and 3-pin/2-pin plug
7. Carrying Case

FIT10-SET11-E ---

Graphic Programming Console (GPC)
Name Specifications Model number Standards

GPC (LCD display) W/battery; power supply: 32 kw, 100 VAC;
w/comments; System Memory Cassette ordered
separately.

3G2C5-GPC03-E

W/battery; power supply: 32 kw, 200 VAC;
w/comments; System Memory Cassette ordered
separately.

3G2C5-GPC04-E

GPC Carrying Case W/side pocket for accessories C500-CS001

GPC System Memory
Cassette

For K-Type PCs W/comments 3G2C5-MP304-EV3 ---

Cassette Interface Unit Used to load programs in V8, M1R, M5R, POR, or S6
cassettes into the GPC and print them out through a
Printer Interface Unit.

3G2A5-CMT01-E

Standard Models Appendix A

170

Peripheral Devices
Name Specifications Model number Standards

Programming Console Vertical, with backlight 3G2A5-PRO13-E U, C

Horizontal, with backlight 3G2A6-PRO15-E ---

Hand-Held, with backlight. The Programming Console
Adapter AP003 and connecting cable CN222/CN422
are necessary. They are sold separately.

C200H-PR027-E U, C

Programming Console
Mounting Bracket

Used to attach Hand-held Programming Console to a
panel.

C200H-ATT01 ---

Programming Console For C20K/C28K/C40K/C60K 1 m 3G2C7-CN122 ---

Connecting Cables 50 cm 3G2C7-CN512 ---

For Hand-held Programming Console 2 m C200H-CN222 U, C

4 m C200H-CN422 U, C

Programming Console
Adapter

Attached to PC when connecting Programming
Console via cable (for 3G2A5-PRO13-E or
3G2A6-PRO15-E).

3G2A5-AP001-E ---

Required to use Hand-held Programming Console. 3G2A5-AP003 ---

Programming Console
Base

Attached to Programming Console when connecting
Programming Console via cable.

3G2A5-BP001 ---

Cassette Recorder
Connecting Cable

Used to connect Programming Console, GPC, or
Cassette Deck Interface Unit to a cassette deck;
length: 1 m.

SCYPOR-PLG01 ---

PROM Writer Used for all K-type PCs. C500-PRW06 ---

Printer Interface Unit Interface for X-Y plotter or printer; System Memory
Cassette ordered separately.

3G2A5-PRT01-E ---

Memory Rack K-type PCs w/comment printing function C500-MP102-EV3

K-type PCs C20-MP009-EV3

Printer Connecting Cable 2 m (also used for X-Y plotter) SCY-CN201 ---

Floppy Disk Interface
Unit

C20K/C28K/C40K/C60K. GPC required; with comment
file; able to connect to NEC floppy disk controller

3G2C5-FDI03-E ---

Peripheral Interface Unit To connect GPC or FIT to K-type PCs 3G2C7-IP002-V2

Connecting Cable Used to connect FIT or GPC to 2 m 3G2A2-CN221 ---
Peripheral Interface Unit and to 5 m 3G2A5-CN523
connect Programming Console 10 m 3G2A5-CN131
Adapter and Programming Console 20 m 3G2A5-CN231

Base. 30 m 3G2A5-CN331

40 m 3G2A5-CN431

50 m 3G2A5-CN531

• U: UL, C: CSA, N: NK
See Omron sales representatives concerning operating conditions under which UL, CSA, and NK standards were met (Aug. 1988).

171

Appendix B
Programming Instructions and Execution Times

Function code Name Mnemonic Page

- LOAD LD 73

- LOAD NOT LD NOT 73

- AND AND 73

- AND NOT AND NOT 73

- OR OR 73

- OR NOT OR NOT 73

- AND LOAD AND LD 74

- OR LOAD OR LD 74

- OUTPUT OUT 75

- OUTPUT NOT OUT NOT 75

- TIMER TIM 83

- COUNTER CNT 90

00 NO OPERATION NOP 81

01 END END 81

02 INTERLOCK IL 78

03 INTERLOCK CLEAR ILC 78

04 JUMP JMP 80

05 JUMP END JME 80

08 STEP DEFINE STEP 128

09 STEP START SNXT 128

10 SHIFT REGISTER SFT 106

11 KEEP KEEP 77

12 REVERSIBLE COUNTER CNTR 93

13 DIFFERENTIATE UP DIFU 75

14 DIFFERENTIATE DOWN DIFD 75

15 HIGH-SPEED TIMER TIMH 86

16 WORD SHIFT WSFT 110

20 COMPARE CMP 112

21 MOVE MOV 111

22 MOVE NOT MVN 112

23 BCD-TO-BINARY BIN 115

24 BINARY-TO-BCD BCD 115

30 BCD ADD ADD 120

31 BCD SUBTRACT SUB 122

32 BCD MULTIPLY MUL 123

33 BCD DIVIDE DIV 124

40 SET CARRY STC 125

41 CLEAR CARRY CLC 125

60 REVERSIBLE DRUM COUNTER RDM 103

Programming Instructions and Execution Times Appendix B

172

Function code PageMnemonicName

61 HIGH-SPEED DRUM COUNTER HDM 94

62 END WAIT ENDW 135

63 NOTATION INSERT NETW 136

76 4-TO-16 DECODER MLPX 116

77 16-TO-4 ENCODER DMPX 118

84 REVERSIBLE SHIFT REGISTER SFTR 109

91 SUBROUTINE ENTER SBS 126

92 SUBROUTINE DEFINE SBN 126

93 RETURN RET 126

97 I/O REFRESH IORF 135

Instruction Execution Times
This following table lists the execution times for all instructions that are available for the K-types. The maxi-
mum and minimum execution times and the conditions which cause them are given where relevant.

Execution times for most instructions depend on whether they are executed with an ON or an OFF execution
condition. The OFF execution time for an instruction can also vary depending on the circumstances, i.e.,
whether it is in an interlocked program section and the execution condition for IL is OFF, whether it is between
JMP(04) 00 and JME(05) 00 and the execution condition for JMP(04) 00 is OFF, or whether it is reset by an
OFF execution condition. “R,” “IL,” and “JMP” are used to indicate these three times.

Execution times are expressed in microseconds except where noted.

Function
code

Instruction Execution
time(µs)

Conditions

--- LD 12 Always

LD NOT 12 Always

AND 11.5 Always

AND NOT 11.5 Always

OR 11.5 Always

OR NOT 11.5 Always

AND LD 4 Always

OR LD 4 Always

OUT 17 When outputting logical “1” (ON)

17.5 When outputting logical “0” (OFF)

OUT NOT 19 When outputting logical “1” (ON)

17.5 When outputting logical “0” (OFF)

Appendix BProgramming Instructions and Execution Times

173

Function
code

ConditionsExecution
time(µs)

Instruction

--- TIM 95 When timing

95.5 to 186.5 When reset

CNT 80.5 When counting

91.5 TO 184 When reset

00 NOP 2 Always

01 END — Refer to Cycle Time Calculation Example.

02 IL 2.5 Always

03 ILC 3 Always

04 JMP 94 Always

05 JME 38 Always

08 STEP 60 to 127 Always

09 SNXT 100 Always

10 SFT 102 When shifting 1 word

248 When shifting 13 words

90 to 254 When reset (1 to 13 words)

11 KEEP 19 When set

20 When reset

12 CNTR 95 When counting DOWN

190.5 When counting UP (word specified)

13 DIFU 60.5 When input = 1

56.5 When input = 0

14 DIFD 59 When input = 1

62.5 When input = 0

15 TIMH 94.5 When timing

97 to 187.5 When reset

16 WSFT 97 When shifting DM by 1 word

825.5 When shifting DM by 64 words

20 CMP 121.5 When comparing a constant with word data

212 When comparing a TIM/CNT with word data

21 MOV 109 When transferring a constant to a word

196 When transferring a TIM/CNT to a word

22 MVN 108.5 When inverting & transferring a constant to a word

196 When inverting & transferring a TIM/CNT to a word

23 BIN 115 When converting & transferring a TIM/CNT to a word

193.5 When converting & transferring a word to a word

24 BCD 194 When converting & transferring DM to DM

202.5 When converting & transferring data in other areas

30 ADD 233 When adding two words

352 When adding a TIM/CNT to a constant

31 SUB 237.5 When subtracting a word from a word

356.5 When subtracting a constant from a TIM/CNT

32 MUL 655 When multiplying a DM word by a DM word

Programming Instructions and Execution Times Appendix B

174

Function
code

ConditionsExecution
time(µs)

Instruction

33 DIV 572 When dividing a DM word by a DM word

40 STC 16 Always

41 CLC 16 Always

60 RDM 695 At reset

61 HDM 734 Always

62 ENDW 197 With DM word

63 NETW 58 Always

76 MLPX 212.5 Word, 1 digit (constant) —> word

288 Word, 4 digits (constant) —> word

355 TIM/CNT, 1 digit (TIM/CNT) —> word

431 TIM/CNT, 4 digits (TIM/CNT) —> word

77 DMPX 298.5 Word, 1 digit (constant) —> word

658.5 Word, 4 digits (constant) —> word

456 TIM/CNT, 1 digit (TIM/CNT) —> word

1,080 TIM/CNT, 4 digits (TIM/CNT) —> word

145 When shifting one word

743 When shifting 64 DM words

84 SFTR 136 to 668 When resetting 1 to 64 DM words

44 NOP

42 IL

91 SBS 75 Always

92 SBN 26 Always

93 RET 49 Always

97 IORF 108 When refreshing 1 word

Appendix BProgramming Instructions and Execution Times

175

Ladder Diagram Instructions

Name
Mnemonic

Symbol
Function

Operands

LOAD
LD

LD B

Used to start instruction block with status
of designated bit.

B:
IR
SR
HR
TC
TR

LOAD NOT
LD NOT

LD NOT B

Used to start instruction block with in-
verse of designated bit.

B:
IR
SR
HR
TC
TR

AND
AND

AND B

Logically ANDs status of designated bit
with execution condition.

B:
IR
SR
HR
TC
TR

AND NOT
AND NOT

AND NOT B

Logically ANDs inverse of designated bit
with execution condition.

B:
IR
SR
HR
TC
TR

OR
OR

OR B

Logically ORs status of designated bit
with execution condition.

B:
IR
SR
HR
TC
TR

OR NOT
OR NOT

OR NOT B

Logically ORs inverse of designated bit
with execution condition.

B:
IR
SR
HR
TC
TR

AND LOAD
AND LD

AND LD -

Logically ANDs results of preceding
blocks.

None

OR LOAD
OR LD

OR LD -

Logically ORs results of preceding
blocks.

None

Refer to table at beginning of Appendix B for page references.

Programming Instructions and Execution Times Appendix B

176

Name
Mnemonic Operands

Function
Symbol

OUTPUT
OUT

B

OUT B

Turns ON designated bit. B:
IR
HR
TR

OUTPUT NOT
OUT NOT

OUT NOT B

B

Turns OFF designated bit. B:
IR
HR
TR

TIMER
TIM

TIM

N SV

TIM N

SV

ON-delay (decrementing) timer opera-
tion. Set value: 999.9 s; accuracy:
+0.0/-0.1 s. Same TC bit cannot be as-
signed to more than one timer/counter.
The TC bit is input as a constant.

N:
TC

SV:
IR
HR
#

COUNTER
CNT

CNT

N SV

CNT
N

SV

A decrementing counter. SV: 0 to 9999;
CP: count pulse; R: reset input. The TC
bit is input as a constant.

N:
TC

SV:
IR
HR
#

Refer to table at beginning of Appendix B for page references.

Appendix BProgramming Instructions and Execution Times

177

Special Instructions

Name
Mnemonic Symbol Function Operands

NO OPERATION
NOP (00)

None Nothing is executed and next instruc-
tion is moved to.

None

END
END(01) END(01)

Required at the end of the program. None

INTERLOCK
IL(02)
INTERLOCK
CLEAR
ILC(03)

IL(02)

ILC(03)

If interlock condition is OFF, all outputs
are turned OFF and all timer PVs reset
between this IL(02) and the next
ILC(03). Other instructions are treated
as NOP; counter PV are maintained.

None

JUMP
JMP(04)
JUMP END
JME(05)

JMP(04)

JME(05)

Cause all instructions between
JMP(04) and the corresponding
JME(05) to be ignored. Corresponding
JME is next one in program; only 8
JMP-JME pairs allowed per program.

None

STEP DEFINE
STEP(08) STEP(08) N

STEP(08)

Is used in the definition of program
sections. STEP N marks the beginning
of the section identified by N. STEP
without an operand indicates the end
of a series of program sections.

N:
HR

STEP START
SNXT(09)

SNXT(09) N

SNXT resets the timers and clears the
data areas used in the previous pro-
gram section. SNTX must also be
present at the end of a series of pro-
gram sections.

N:
HR

SHIFT REGISTER
SFT(10) I

P

R

SFT(10)
St
E

Creates a bit shift register from the
starting word (St) through the ending
word (E). I: input bit; P: shift pulse; R:
reset input. St must be less than or
equal to E and Bg and E must be in the
same data area.

E St
15 1500

IN
00

St/E:
IR
HR

KEEP
KEEP(11) S

R

KEEP(11)

B

Defines a bit (B) as a latch controlled
by set (S) and reset (R) inputs.

B:
IR
HR

REVERSIBLE
COUNTER
CNTR (12)

II

DI

R
N

SV

CNTR

Increases or decreases PV by one
whenever the increment input (II) or
decrement input (DI) signal goes from
OFF to ON. SV: 0 to 9999; R: reset in-
put. Must not access the same TC bit
as another timer/counter. The TC bit is
input as a constant.

N:
TC

SV:
IR
HR
#

Refer to table at beginning of Appendix B for page references.

Programming Instructions and Execution Times Appendix B

178

Name
Mnemonic OperandsFunctionSymbol

DIFFERENTIATE
UP
DIFU(13)
DIFFERENTIATE
DOWN
DIFD(14)

DIFU(13)

DIFD(14)

B

B

DIFU turns ON the designated bit (B)
for one cycle on the rising edge of the
input signal; DIFD turns ON the bit for
one cycle on the trailing edge. The
maximum number of DIFU/DIFDs is
48.

B:
IR
HR

HIGH-SPEED
TIMER
TIMH(15)

TIMH(15) N

SV

A high-speed ON-delay (decrementing)
timer. SV: 0.02 to 99.99 s. Must not be
assigned the same TC bit as another
timer/counter. The TC bit is input as a
constant.

N:
TC

SV:
IR
HR
#

WORD SHIFT
WSFT(16) WSFT(16)

St
E

Shifts data between the start and end
words in word units.

St/E:
IR
HR
DM

COMPARE
CMP(20) CMP(20)

Cp1
Cp2

Compares two sets of four-digit hexa-
decimal data (Cp1 and Cp2) and out-
puts result to GR, EQ, and LE.

Cp1/Cp2:
IR
SR
HR
TC
DM
#

MOVE
MOV(21) MOV(21)

S
D

Transfers source data (S) (word or
four-digit constant) to destination word
(D).

S:
IR
SR
HR
TC
DM
#

D:
IR
HR
DM

MOVE NOT
MVN(22) MVN(22)

S
D

Inverts source data (S) (word or
four-digit constant) and then transfers it
to destination word(D).

S:
IR
SR
HR
TC
DM
#

D:
IR
HR
DM

BCD-TO-BINARY
BIN(23) BIN(23)

S
R

Converts four-digit, BCD data in source
word (S) into 16-bit binary data, and
outputs converted data to result word
(R).

S R

x100

x101

x102

x103

x160

x161

x162

x163

(BCD) (BIN)

S:
IR
SR
HR
TC
DM

R:
IR
HR
DM

Refer to table at beginning of Appendix B for page references.

Appendix BProgramming Instructions and Execution Times

179

Name
Mnemonic OperandsFunctionSymbol

BINARY-TO-BCD
BCD(24) BCD(24)

S
R

Converts binary data in source word (S)
into BCD, and outputs converted data to
result word (R).

x160

x161

x162

x163

x101

x102

x103

S R
(BIN) (BCD)

x100

S:
IR
SR
HR
DM

R:
IR
HR
DM

BCD ADD
ADD(30) ADD(30)

Au
Ad
R CY CY

Adds two four-digit BCD values (Au
and Ad) and content of CY, and out-
puts result to specified result word (R).

Au + Ad + R

Au/Ad
IR
SR
HR
TC
DM
#

R:
IR
HR
DM

BCD SUBTRACT
SUB(31)

SUB(31)
Mi
Su
R

Subtracts both four-digit BCD subtra-
hend (Su) and content of CY from
four-digit BCD minuend (Mi) and out-
puts result to specified result word (R).

CY CYMi - Su R

Mi/Su:
IR
SR
HR
TC
DM
#

R:
IR
HR
DM

BCD MULTIPLY
MUL(32)

MUL(32)
Md
Mr
R

Multiplies a words data or a four-digit
BCD value(Md) and another words
data (Mr) and outputs the result to a
specified result word (R).

Md X Mr R R + 1

Md/Mr
IR
SR
HR
TC
DM
#

R:
IR
HR
DM

BCD DIVIDE
DIV(33)

DIV(33)
Dd
Dr
R

Divides a words data or a four-digit
BCD dividend (Dd) and another words
data (Dr) and outputs result to speci-
fied result word (R).

R R + 1

Dd/Dr:
IR
SR
HR
TC
DM
#

R:
IR
HR
DM

SET CARRY
STC(40) STC(40)

Sets carry flag (i.e., turns CY ON). None

CLEAR CARRY
CLC(41) CLC(41)

CLC clears carry flag (i.e, turns CY
OFF).

None

REVERSIBLE
DRUM COUNTER
RDM(60)

RDM(60)
D

High-speed UP-DOWN counter opera-
tion.

D:
IR
HR
DM

HIGH-SPEED
DRUM COUNTER
HDM(61)

HDM(61)
D

A 2-kHz counter with both software
and hardware resets.

D:
IR
HR
DM

Refer to table at beginning of Appendix B for page references.

Programming Instructions and Execution Times Appendix B

180

Name
Mnemonic OperandsFunctionSymbol

END WAIT
ENDW(62) ENDW(62)

N

Used to force a cycle time longer than
normal causing the CPU to wait.

N:
IR
HR
TC
DM
#

NOTATION
INSERT
NETW(63)

NETW(63)
C1
C2

Used to leave comments in the pro-
gram.

#

4-TO-16
DECODER
MLPX(76) MLPX(76)

S
Di
R

Converts up to four hexadecimal digits
in source word (S) into decimal values
from 0 to 15 and turns ON, in result
word(s) (R), bit(s) corresponding to
converted value. Digits designated in
Di digits (rightmost digit: first digit to be
converted; next digit to left: number of
digits to be converted minus 1).

S 3 2 1 0

3

0 to F

Di

S:
IR
SR
HR
TC
DM

Di:
IR
HR
TC
DM
#

R:
IR
HR
DM

16-TO-4
ENCODER
DMPX(77) DMPX(77)

S
R
Di

Determines position of highest ON bit in
source word(s) (starting word: S) and
turns ON corresponding bit(s) in result
word (R). Digit designations made with Di
digits (rightmost digit: first digit to receive
converted value; next digit to left: number
of words to be converted minus 1).

.

S

15 0

3 0

R 3 2 1 0 0 to F

S:
IR
SR
HR
TC
DM

R:
IR
HR
DM

Di:
IR
HR
TC
DM
#

REVERSIBLE
SHIFT REGISTER
SFT(84)

SFTR(84)
C
St

E

Shifts data in a specified word or series
of words one bit to either the left or the
right.

St/E:
IR
HR
DM

C:
IR
HR
DM

SUBROUTINE
ENTER
SBS(91)

SBS(91) N

Transfers control of a program over to
a subroutine N.

N:
00 to 15

SUBROUTINE
DEFINE
SBN(92)

SBN(92) N

Indicates the beginning of a subroutine
definition.

N:
00 to 15

Refer to table at beginning of Appendix B for page references.

Appendix BProgramming Instructions and Execution Times

181

Name
Mnemonic OperandsFunctionSymbol

RETURN
RET(93) RET(93)

Indicates the end of a subroutine defi-
nition.

None

I/O REFRESH
IORF(97) IORF(97)

St
E

Refreshes I/O words between a speci-
fied range. Refreshes words in word
units.

St/E:
00 to 09

Refer to table at beginning of Appendix B for page references.

183

Appendix C
Programming Console Operations

Name Function Page

Data Clear Used to erase data, either selectively or totally, from the Program Memory and
the IR, AR, HR, DM, and TC areas.

47

Address Designation Displays the specified address. 50

Program Search Searches a program for the specified data address or instruction. 55

Instruction Insert
Instruction Delete

Allows a new instruction to be inserted before the displayed instruction, or
deletes the displayed instruction (respectively).

57

Program Check Checks the completed program for syntax errors (up to three levels in H-type
PCs).

53

Error Message Read Displays error messages in sequence, starting with the most severe messages. 148

Bit/Word Monitor Displays the specified address whose operand is to be monitored. In RUN or
MONTR mode it will show the status of the operand for any bit or word in any
data area.

150

Forced Set/Reset Set: Used to turn ON bits or timers, or to increment counters currently
displayed on the left of the screen.
Reset: Used to turn OFF bits, or to reset timers or counters.

153

Hex/BCD Data Change Used to change the value of the leftmost BCD or hexadecimal word displayed
during a Bit/Word Monitor operation.

155

SV Change
SV Reset

Alters the SV of a timer or counter either by incrementing or decrementing the
value, or by overwriting the original value with a new one.

156

Program Memory Save Saves Program Memory to tape. 158

Program Memory Restore Reads Program Memory from tape. 159

Program Memory Compare Compares Program Memory data on tape with that in the Program Memory
area.

159

System Operations
Operation/Description Modes* Key sequence

Data Clear
Unless otherwise specified, this
operation will clear all erasable
memory in Program Memory and
IR, HR, AR, DM, and TC areas. To
clear EPROM memory the write
enable switch must be ON (i.e.,
enabled). The branch lines shown
are used only when performing a
partial memory clear, with each of
the memory areas entered being
retained. Specifying an address will
result in the Program Memory after
and including that address being
deleted. All memory up to that
address will be retained.

P
CLR

PLAY

SET
NOT

REC

RESET
MONTR

HR

CNT

DM

[Address] Partial
Clear

Retained if
pressed

All Clear

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Programming Console Operations Appendix C

184

Programming Operations

Operation/Description Modes* Key sequence

Address Designation
Displays the specified address. Can
be used to start programming from
a non-zero address or to access an
address for editing. Leading zeros
need not be entered. The contents
of the address will not be displayed
until the down key is pressed. The
up and down keys can then be used
to scroll through the Program
Memory.

R P M

CLR [Address]

Program Search
Allows the program to be searched
for occurrences of any designated
instruction or data area address. To
designate a bit address, press
SHIFT, CONT/#, and then input the
address. Then press SRCH.
Pressing SRCH again will find the
next occurrence. In RUN or
MONITOR mode, the ON/OFF
status of each monitored bit will also
be displayed. Applicable data areas
vary according to the PC being
used.

R P M
CLR SRCH SRCH

CLR SHIFT
CONT

#

SRCH SRCH

HR

TIM

CNT

[Instruction]

[Address]

Instruction Insert and
Instruction Delete
The displayed instruction can be
deleted, or another instruction can
be inserted before it. Care should
be taken to avoid inadvertent
deletions as there is no way of
recovering the instructions other
than to re-enter them. When an
instruction is deleted all subsequent
instruction addresses are
automatically adjusted so that there
are no empty addresses, or
instructions without addresses.

P
INSAt the desired position

in program:

DEL

 Instruction
currently
displayed

[Enter new
instruction]

Insert

Delete

Program Check
Once a program has been entered,
it should be checked for errors. The
address where the error was
generated will be displayed.

P
CLR SRCH SRCH

CLR

Press SRCH to find
next error.

Cancel

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Debugging Operations

Operation/Description Modes* Key sequence

Error Message Read
Displays error messages in
sequence with most severe
messages displayed first. Press
monitor to access remaining
messages. In PROGRAM mode,
pressing MONTR clears the
displayed message from memory
and the next message is displayed.

R P M
CLR FUN MONTR MONTR

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Appendix CProgramming Console Operations

185

Monitoring and Data Changing Operations
Operation/Description Modes* Key sequence

Bit/Word Monitor
Up to six memory addresses,
containing either words or bits, or a
combination of the two, can be
monitored at once. Only three can
be displayed at any one time. If
operated in RUN or MONITOR
mode, the status of monitored bits
will also be displayed.
The operation can be started from a
cleared display by entering the
address of the first word or bit to be
monitored and pressing MONTR, or
from any address in the program by
displaying the address of the bit or
word to be monitored and pressing
MONTR.
When a timer or counter is
monitored, its PV will be displayed
and a box is displayed in the bottom
left hand corner if the Completion
Flag is ON.
Applicable data areas vary
according to the PC being used.

R P M

Clears the left-
most address
from the screen.

CLR SHIFT
CONT

#

HR

LD

OUT

TIM

CNT

DM

MONTR

CLR

[Address]

Cancel

MONTR

Forced Set/Reset
If a bit, timer, or counter address is
leftmost on the screen during a
Bit/Word Monitor operation,
pressing PLAY/SET will turn ON the
bit, start the timer, or increment the
counter. Pressing REC/RESET will
turn OFF the bit, or reset the timer
or counter. These force-sets and
force-resets are effective for one
cycle.
Timers will not operate in
PROGRAM mode. SR bits are not
affected by this operation.

P M PLAY

SET

REC

RESET

Bit/Word monitor in progress. Bit or
Timer/Counter currently monitored
appears on left of the screen.

Hex/BCD Data Change
Used to edit the leftmost BCD or
hexadecimal value displayed during
a Bit/Word Monitor operation. If a
timer or counter is leftmost on the
display, the PV will be the value
displayed and affected by this
operation. It can only be changed in
MONITOR mode and only while the
timer or counter is operating. SR
words cannot be changed using this
operation.

P M
CHG WRITE[New data]

Bit/Word monitor in progress.
Currently monitored word ap-
pears on the left of the screen.

Programming Console Operations Appendix C

186

Operation/Description Key sequenceModes*

SV Change,
SV Reset
There are three ways of modifying
the SVs for timers and counters.
One method is to enter a new value.

The second is to increment or
decrement the existing SV. In
MONITOR mode the SV can be
changed while the program is being
executed. Incrementing and
decrementing can only be carried
out if the SV has been entered as a
constant.
The third method is to change the
value properties from that of a
constant to a word address, or vice
versa. Note that the display clears
after pressing the CHG key and the
subsequent keystrokes determine
whether the new data will be
entered as a word address
(pressing SHIFT CH/* plus Word
address) or a constant (entering
data only).

P M
M CHG

Timer/Counter
currently displayed WRITE[New SV]

SHIFT
*

CH
[Word] WRITE

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Appendix CProgramming Console Operations

187

Cassette Tape Operations
Operation/Description Modes* Key sequence

Program Memory Save
Copies data from the Program
Memory to tape. The file no.
specified in the instructions provides
an identifying address for the
information within the tape. Each file
number should be used only once
per tape. If only a part of the
Program Memory is to be stored,
the appropriate start and stop
addresses must be entered. Each
C60 tape can store approximately
16K words on each side of the tape.
When the start address is entered,
the maximum stop address is set as
the default. Do not set a stop
address greater than this one. If you
wish to record past this address the
additional information will need to be
recorded either on the flip side of
the tape or on a separate tape. After
starting the tape recorder, wait
about 5 seconds before pressing
SHIFT REC/RESET. This is to allow
the leader tape to pass before the
data transmission starts.

P

EXTCLR SHIFT
REC

RESET

Start tape recorder in
the appropriate mode.[File no.]

5 second leader tape**

Program Memory Restore
To read Program Memory data
which has been recorded on a
cassette tape, the keystrokes are as
given here. The file number must be
the same as the one entered when
the data was recorded. The read
operation will proceed from the
specified start address up to the end
of the tape, unless halted by a CLR
command. The instruction must be
completed before the required data
is reached on the tape, i.e., usually
before the leader tape finishes.

P

Start tape recorder
playback.EXTCLR [File no.]

PLAY

SET
SHIFT

5 second leader tape**

Program Memory Compare
The procedure to compare Program
Memory data stored on a tape with
that in the PC’s Program Memory
area is the same as that for reading
it (see above), except that after
starting the tape playback, VER
should be pressed instead of SHIFT
and PLAY/SET.

P

EXTCLR [File no.] VER

5 second leader tape**

Start tape recorder
playback.

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

**These times take the cassette leader tape into consideration according to the following:
a) When recording to tape, the leader tape needs to be allowed to pass before the data transmission to the tape player starts.
b) When restoring from tape or comparing data, the Programming Console needs to be ready to receive data before the data is transfered
from the tape.

189

Appendix D
Error and Arithmetic Flag Operation

The following table shows which instructions affect the ER, CY, GT, LT and EQ flags. In general, ER indicates
that operand data is not within requirements. CY indicates arithmetic or data shift results. GT indicates that a
compared value is larger than some standard, LT that it is smaller; and EQ, that it is the same. EQ also indi-
cates a result of zero for arithmetic operations. Refer to subsections of Section 5 Instruction Set for details.

Vertical arrows in the table indicate the flags that are turned ON and OFF according to the result of the in-
struction.

Although TIM, CNT, and CNTR are executed when ER is ON, other instructions with a vertical arrow under
the Er column are not executed if ER is ON. All of the other flags in the following table will also not operate
when ER is ON.

Instructions not shown do not affect any of the flags in the table.

Instructions SR 1907 (LE) SR 1906 (EQ) SR 1905 (GR) SR 1904 (CY) SR 1903 (ER)

END(01) OFF OFF OFF OFF OFF

TIM

TIMH(15)

CNT

CNTR(12)

WSFT(16)

CMP(20)

MOV(21)

MVN(22)

BIN(23)

BCD(24)

ADD(30)

SUB(31)

MUL(32)

DIV(33)

STC(40) ON ON

CLC(41) OFF OFF

MLPX(76)

DMPX(77)

SFTR(84)

SBS(91)

Note: means that the flag is affected by the result of instruction execution.

191

Appendix E
Binary–Hexadecimal–Decimal Table

Decimal BCD Hex Binary

00 00000000 00 00000000

01 00000001 01 00000001

02 00000010 02 00000010

03 00000011 03 00000011

04 00000100 04 00000100

05 00000101 05 00000101

06 00000110 06 00000110

07 00000111 07 00000111

08 00001000 08 00001000

09 00001001 09 00001001

10 00010000 0A 00001010

11 00010001 0B 00001011

12 00010010 0C 00001100

13 00010011 0D 00001101

14 00010100 0E 00001110

15 00010101 0F 00001111

16 00010110 10 00010000

17 00010111 11 00010001

18 00011000 12 00010010

19 00011001 13 00010011

20 00100000 14 00010100

21 00100001 15 00010101

22 00100010 16 00010110

23 00100011 17 00010111

24 00100100 18 00011000

25 00100101 19 00011001

26 00100110 1A 00011010

27 00100111 1B 00011011

28 00101000 1C 00011100

29 00101001 1D 00011101

30 00110000 1E 00011110

31 00110001 1F 00011111

32 00110010 20 00100000

193

Appendix F
Word Assignment Recording Sheets

This appendix contains sheets that can be copied by the programmer to record I/O bit allocations and terminal
assignments on the Racks, as well as details of work bits, data storage areas, timers, and counters.

Word Assignment Recording Sheets Appendix F

194

Programmer: Program: Date: Page:
Word: Unit:

Bit Field device Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word: Unit:

Bit Field device Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word: Unit:

Bit Field device Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word: Unit:

Bit Field device Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

I/O Bits

Appendix FWord Assignment Recording Sheets

195

Programmer: Program: Date: Page:
Area: Word:

Bit Usage Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Area: Word:

Bit Usage Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Area: Word:

Bit Usage Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Area: Word:

Bit Usage Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Work Bits

Word Assignment Recording Sheets Appendix F

196

Programmer: Program: Date: Page:
Word Contents Notes Word Contents Notes

Data Storage

Appendix FWord Assignment Recording Sheets

197

Programmer: Program: Date: Page:
TC address T or C Set value Notes TC address T or C Set value Notes

Timers and Counters

199

Appendix G
Program Coding Sheet

The following page can be copied for use in coding ladder diagram programs. It is designed for flexibility, al-
lowing the user to input all required addresses and instructions.

When coding programs, be sure to specify all function codes for instructions and data areas (or # for constant)
for operands. These will be necessary when inputting programs though a Programming Console or other Pe-
ripheral Device.

Program Coding Sheets Appendix G

200

Programmer: Program: Date: Page:
Address Instruction Operand(s) Address Instruction Operand(s) Address Instruction Operand(s)

201

Glossary

address The location in memory where data is stored. For data areas, an address
consists of a two-letter data area designation and a number that designate
the word and/or bit location. For the UM area, an address designates the in-
struction location (UM area); for the FM area, the block location (FM area),
etc.

allocation The process by which the PC assigns certain bits or words in memory for
various functions. This includes pairing I/O bits to I/O points on Units.

Analog Timer Unit A dedicated timer that interfaces through analog signal externally and digital
signals internally.

AND A logic operation whereby the result is true if and only if both premises are
true. In ladder-diagram programming the premises are usually ON/OFF
states of bits or the logical combination of such states called execution condi-
tions.

BCD Short for binary-coded decimal.

BCD calculation An arithmetic calculation that uses numbers expressed in binary-coded deci-
mal.

binary A number system where all numbers are expressed to the base 2. Although
in a PC all data is ultimately stored in binary form, binary is used to refer to
data that is numerically equivalent to the binary value. It is not used to refer
to binary-coded decimal. Each four binary bits is equivalent to one hexadeci-
mal digit.

binary-coded decimal A system used to represent numbers so that each four binary bits is numeri-
cally equivalent to one decimal digit.

bit The smallest unit of storage in a PC. The status of a bit is either ON or OFF.
Four bits equal one digit; sixteen bits, one word. Different bits are allocated to
special purposes, such as holding the status input from external devices,
while other bits are available for general use in programming.

bit address The location in memory where a bit of data is stored. A bit address must
specify (sometimes by default) the data area and word that is being ad-
dressed as well as the number of the bit.

bit designator An operand that is used to designate the bit or bits of a word to be used by
an instruction.

bit number A number that indicates the location of a bit within a word. Bit 00 is the right-
most (least significant) bit; bit 15 is the leftmost (most significant) bit.

buffer A temporary storage space for data in a computerized device.

bus bar The line leading down the left and sometimes right side of a ladder diagram.
Instruction execution follows down the bus bar, which is the starting point for
all instruction lines.

Glossary

202

call A process by which instruction execution shifts from the main program to a
subroutine. The subroutine may be called by an instruction or by an interrupt.

carry flag A flag that is used with arithmetic operations to hold a carry from an addition
or multiplication operation or to indicate that the result is negative in a sub-
traction operation. The carry flag is also used with certain types of shift oper-
ation.

clock pulse A pulse available at a certain bit in memory for use in timing operations. Vari-
ous clock pulses are available with different pulse widths.

clock pulse bit A bit in memory that supplies a pulse that can be used to time operations.
Various clock pulse bit are available with different pulse widths.

condition An ‘instruction’ placed along an instruction line to determine how terminal
instruction on the right side are to be executed. Each condition is assigned to
a bit in memory that determines its status. The status of the bit assigned to
each condition determines, in turn, the execution condition for each instruc-
tion up to a terminal instruction on the right side of the ladder diagram.

constant An operand for which the actual numeric value is input directly and in place
of a data memory address would hold the value to be used.

control bit A bit in a memory area that is set either from the program or from a Program-
ming Device to achieve a specific purpose, e.g., a Restart bit is turned ON
and OFF to restart a Unit.

Control System All of the hardware and software components used to control other devices.
A Control System includes the PC System, the PC programs, and all I/O de-
vices that are used to control or obtain feedback from the controlled system.

controlled system The devices that are being controlled by a PC System.

control signal A signal sent from the PC to affect the operation of the controlled system.

counter Either a dedicated number of digits or words in memory used to count the
number of times a specific process has occurred or a location in memory ac-
cessed through a TC bit and used to count the number of times the status of
a bit or an execution condition has changed from OFF to ON.

CPU An acronym for central processing unit. In a PC System, the CPU executes
the program, processes I/O signals, communicates with external devices,
etc.

CPU Unit The CPU Unit contains the CPU and provides a certain number of I/O points.

cycle The process used to execute a ladder-diagram program. The program is ex-
amined sequentially from start to finish and each instruction is executed in
turn based on execution conditions.

cycle time The time required for a single cycle of the ladder-diagram program.

data area An area in the PC’s memory that is designed to hold a specific type of data,
e.g., the SR area is designed to hold flags and control bits. Memory areas
that hold programs are not considered data areas.

Glossary

203

data area boundary The highest address available in a data area. When designating an operand
that requires multiple words, it is necessary that the highest address in the
data area is not exceeded.

debug A process by which a draft program is corrected until it operates as intended.
Debugging includes both removal of syntax errors as well as fine-tuning of
timing and coordination of control operations.

decimal A number system where all numbers are expressed to the base 10. Although
in a PC all data is ultimately stored in binary form, four binary bits are often
used to represent one decimal digit, a system called binary-coded decimal.

decrement Decreasing a numeric value by 1.

default A value assumed and automatically set by the PC when a specific value is
not input by the user.

definer A number used as an operand for an instruction but that serves to define the
instruction itself rather that the data on which the instruction is to operate.
Definers include jump numbers, subroutine numbers, etc.

delay In tracing, a value that specifies where tracing to begin in relationship to the
trigger. A delay can be either positive or negative, i.e., can designate an off-
set on either side of the trigger.

destination The location where data of some sort in an instruction is to be placed as op-
posed to the location from which data is to be taken for use in the instruction.
The location from which data is to be taken is called the source.

differentiation instruction An instruction used to ensure that the operand bit is never turned ON for
more than one cycle after the execution condition goes either from OFF to
ON for a Differentiate Up instruction or from ON to OFF for a Differentiate
Down instruction.

digit A unit of storage in memory that consists of four bits.

digit designator An operand that is used to designate the digit or digits of a word to be used
by an instruction.

distributed control An automation concept in which control of each portion of an automated sys-
tem is located near the devices actually being controlled, i.e., control is de-
centralized and ‘distributed’ over the system. Distributed control is a concept
basic to PC Systems.

DM area A data area used to hold word data. A word in the DM area cannot be ac-
cessed by bit.

download The process of transferring a program or data from a higher-level computer
to a lower-level computer or PC.

electrical noise Electrical ‘static’ that can disturb electronic communications. The ‘snow’ that
can appear on a TV screen is an example of the effects of electrical noise.

error code A numeric code output to indicate the existence of and something about the
nature of an error. Some error codes are generated by the system; other are
defined in the program by the operator.

Glossary

204

exection condition The ON or OFF status under which an instruction is executed. The execution
condition is determined by the logical combination of conditions on the same
instruction line and up to the instruction being executed.

execution time The time required for the CPU to execute either an individual instruction or
an entire program.

Expansion I/O Unit An Expansion I/O Unit is connected to increase the number of I/O points
available.

extended counter A counter created in a program that count higher that any of the standard
counters provided by the individual instructions.

extented timer A timer created in a program that times longer that any of the standard timers
provided by the individual instructions.

Factory Intelligent Terminal A Programming Device provided with advanced programming and debugging
capabilities to facilitate PC operation. The Factory Intelligent Terminal also
provides various interfaces for external devices, such as floppy disk drives.

fatal error An error that will stop PC operation and require correction before operation
can be continued.

FIT Short for Factory Intelligent Terminal.

flag A dedicated bit in memory that is set by the system to indicate some type of
operating status. Some flags, such as the carry flag, can also be set by the
operator or program.

flicker bit A bit that is programmed to turn ON and OFF at a specific interval.

force reset The process of artificially turning OFF a bit from a Programming Device. Bits
are usually turned OFF as a result of program execution.

force set The process of artificially turning ON a bit from a Programming Device. Bits
are usually turned ON as a result of program execution.

function code A two-digit number used to input an instruction into the PC.

GPC Short for Graphic Programming Console.

A Programming Device provided with advanced programming and debugging
capabilities to facilitate PC operation. A Graphic Programming Console is
provided with a large display onto which ladder-diagram programs can be
written directly in ladder-diagram symbols for input into the PC without con-
version to mnemonic form.

hardware error An error originating in the hardware structure of the PC, as opposed to a soft-
ware error, which ordinates in software (i.e., programs).

hexadecimal A number system where all numbers are expressed to the base 16. Although
in a PC all data is ultimately stored in binary form, displays on and inputs
through Programming Devices are often expressed in hexadecimal to facili-
tate operation. Each four binary bits is numerically equivalent to one hexade-
cimal digit.

Graphic Programming
Console

Glossary

205

Host Link System One or more host computers connected to one or more PCs through Host
Link Units so that the host computer can be used to transfer data to and re-
ceive data from the PC(s). Host Link Systems enable centralized manage-
ment and control of a PC System.

Host Link Unit An interface used to connect a PC to a host computer in a Host Link System.

host computer A computer that is used to transfer data or programs to or receive data or
programs from a PC in a Host Link System. The host computer is used for
data management and overall system control. Host computers are generally
small personal or business computers.

HR area A data area used to store and manipulate data and to preserve data when
power to the PC is turned OFF.

I/O capacity The number of inputs and outputs that a PC is able to handle. This number
ranges from around one-hundred for smaller PCs to two-thousand for the
largest ones.

I/O devices The devices to which terminals on I/O Units, Special I/O Units, etc., are con-
nected. I/O devices may be either part of the Control System, if they function
to help control other devices, or they may be part of the controlled system.

I/O Link Created in an Optical Remote I/O System to enable input/output of one or
two IR words directly between PCs. The words are input/output between the
PC controlling the Master and a PC connected to the Remote I/O System
through an I/O Link Unit or an I/O Link Rack.

I/O Link Unit A Unit used with certain PCs to create an I/O Link in an Optical Remote I/O
System.

I/O point The place at which an input signal enters the PC System or an output signal
leaves the PC System. In physical terms, an I/O point corresponds to termi-
nals or connector pins on a Unit; in terms of programming, an I/O point corre-
sponds to an I/O bit in the IR area.

I/O response time The time required for an output signal to be sent from the PC in response to
and input signal received from an external device.

I/O Unit The most basic type of Unit mounted to a backplane to create a Rack. I/O
Units include Input Units and Output Units, each of which is available in a
range of specifications. I/O Units do not include Special I/O Units, Link Units,
etc.

I/O word A word in the IR area that is allocated to a Unit in the PC System.

increment Increasing a numeric value by 1.

initialization error An error that occurs either in hardware or software before the PC System
has actually begun operation, i.e., during initialization.

initialize Part of the startup process whereby some memory areas are cleared, system
setup is checked, and default values are set.

input The signal coming from an external device into the PC. Input often is used
abstractly or collectively to refer to incoming signals.

Glossary

206

input bit A bit in the IR area that is allocated to hold the status of an input.

input device An external device that sends signal(s) into the PC System.

input point The point at which an input enters the PC System. An input point physically
corresponds to terminals or connector pin(s).

input signal A change in the status of a connection entering the PC. Generally an input
signal is said to exist when, for example, a connection point goes from low to
high voltage or from a nonconductive to a conductive state.

instruction A direction given in the program that tells the PC an action to be carried out
and the data to be used in carrying out the action. Instructions can simply
turn a bit ON or OFF, or they can perform much more complex actions, such
as converting and/or transferring large blocks of data.

instruction block A group of instructions that is logically related in a ladder-diagram program.
Although any logically related group of instructions could be called an instruc-
tion block, the term is generally used to refer to blocks of instructions called
logic blocks that require logic block instructions to relate them to other in-
structions or logic blocks.

instruction execution time The time required to execution an instruction. The execution time for any one
instruction can vary with the execution condition for the instruction and the
operands used in it.

instruction line A group of conditions that lie together on the same horizontal line of a ladder
diagram. Instruction lines can branch apart or join together to form instruction
blocks.

interface An interface is the conceptual boundary between systems or devices and
usually involves changes in the way the communicated data is represented.
Interface devices perform operations as changing the coding, format, or
speed of the data.

interlock A programming method used to treat a number of instructions as a group so
that the entire group can be reset together when individual execution is not
required. An interlocked program section is executed normally for an ON ex-
ecution condition and partially reset for an OFF execution condition.

IR area A data area whose principal function is to hold the status of inputs coming
into the system and outputs that are to be set out of the system. Bits and
words in the IR are that are used this way are called I/O bits and I/O words.
The remaining bits in the IR area are work bits.

jump A type of programming where execution moves directly from one point in a
program to a separate point in the program without sequentially executing
the instruction in between. Jumps are usually conditional on an execution
condition.

jump number A definer used with a jump that defines the points from which and to which a
jump is to be made.

ladder diagram (program) A form of program arising out of relay-based control systems that uses cir-
cuit-type diagrams to represent the logic flow of programming instructions.
The appearance of the program suggests a ladder, and thus the name.

Glossary

207

ladder diagram symbol A symbol used in a ladder-diagram program.

ladder instruction An instruction that represents the ‘rung’ portion of a ladder-diagram program.
The other instructions in a ladder diagram fall along the right side of the dia-
gram and are called terminal instructions.

leftmost (bit/word) The highest numbered bits of a group of bits, generally of an entire word, or
the highest numbered words of a group of words. These bits/words are often
called most significant bits/words.

link A hardware or software connection formed between two Units. “Link” can
refer either to a part of the physical connection between two Units or a soft-
ware connection created to data existing at another location (I/O Links).

load The processes of copying data either from an external device or from a stor-
age area to an active portion of the system such as a display buffer. Also, an
output device connected to the PC is called a load.

logic block A group of instructions that is logically related in a ladder-diagram program
and that requires logic block instructions to relate it to other instructions or
logic blocks.

logic block instruction An instruction used to locally combine the execution condition resulting from
a logic block with a current execution condition. The current execution condi-
tion could be the result of a single condition or of another logic block. AND
Load and OR Load are the two logic block instructions.

LR area A data area that is used in a PC Link System so that data can be transferred
between two or more PCs. If a PC Link System is not used, the LR area is
available for use as work bits.

Master Short for Remote I/O Master Unit.

main program All of a program except for the subroutines.

memory area Any of the areas in the PC used to hold data or programs.

mnemonic code A form of a ladder-diagram program that consists of a sequential list of the
instructions without using a ladder diagram. Mnemonic code is required to
input a program into a PC when using a Programming Console.

MONITOR mode A mode of PC operation in which normal program execution is possible but in
which modification of data held in memory is still possible. Used for monitor-
ing or debugging the PC.

NC input An input that is normally closed, i.e., the input signal is considered to be
present when the circuit connected to the input opens.

nest Programming one jump within another jump, programming a call to a subrou-
tine from within another subroutine, etc.

NO input An input that is normally open, i.e., the input signal is considered to be pres-
ent when the circuit connected to the input closes.

noise interference Disturbances in signals caused by electrical noise.

Glossary

208

nonfatal error A hardware or software error that produces a warning but does not stop the
PC from operating.

normally closed condition A condition that produces an ON execution condition when the bit assigned
to it is OFF, and an OFF execution condition when the bit assigned to it is
ON.

normally open condition A condition that produces an ON execution condition when the bit assigned
to it is ON and an OFF execution condition when the bit assigned to it is OFF.

NOT A logic operation which inverts the status of the operand. For example, AND
NOT indicates an AND with the opposite of the actual status of the operand
bit.

OFF The status of an input or output when a signal is said not to be present. The
OFF state is generally low voltage or non-conductivity, but can be defined as
the opposite of either.

OFF delay The delay produced between the time turning OFF a signal is initiated (e.g.,
by an input device or PC) and the time the signal reaches a state readable as
an OFF signal (i.e., as no signal) by a receiving party (e.g., output device or
PC).

ON The status of an input or output when a signal is said to be present. The ON
state is generally high voltage or conductivity, but can be defined as the op-
posite of either.

ON delay The delay produced between the time a signal is initiated (e.g., by an input
device or PC) and the the time the signal reaches a state readable as an ON
signal by a receiving party (e.g., output device or PC).

one-shot bit A bit that is turned ON or OFF for a specified interval of time longer than one
cycle.

operand A bit(s) or word(s) designated as the data to be used for an instruction. An
operand can be input as a constant expressing the actual numeric value to
be used or as an address to express the location in memory of the data to be
used.

operand bit A bit designated as an operand for an instruction.

operand word A word designated as an operand for an instruction.

operating error An error that occurs during actual PC operation as opposed to an initializa-
tion error, which occurs before actual operations can begin.

Optical Slave Rack A Slave Rack connected through an Optical Remote I/O Slave Unit.

OR A logic operation whereby the result is true if either one or both of the prem-
ises is true. In ladder-diagram programming the premises are usually ON/
OFF states of bits or the logical combination of such states called execution
conditions.

output The signal sent from the PC to an external device. Output often is used ab-
stractly or collectively to refer to outgoing signals.

Glossary

209

output bit A bit in the IR area that is allocated to hold the status to be sent to an output
device.

output device An external device that receives a signal(s) from the PC System.

output point The point at which an output leaves the PC System. An output point physical-
ly corresponds to terminals or connector pin(s).

output signal A change in the status of a connection leaving the PC. Generally an output
signal is said to exist when, for example, a connection point goes from low to
high voltage or from a nonconductive to a conductive state.

overseeing Part of the processing performed by the CPU that includes general tasks re-
quired to operate the PC.

overwrite Changing the content of a memory location so that the previous content is
lost.

PC An acronym for Programmable Controller.

PC System All of the Units connected to the CPU Unit up to, but not including the I/O de-
vices. The limits of the PC System on the upper end is the PC and the pro-
gram in its CPU and on the lower end, I/O Units, an I/O Link Unit, etc.

PCB An acronym for printed circuit board.

Peripheral Device Devices connected to a PC System to aid in system operation. Peripheral
devices include printers, programming devices, external storage media, etc.

present value The current time left on a timer or the current count of a counter. Present val-
ue is abbreviated PV.

printed circuit board A board onto which electrical circuits are printed for mounting into a comput-
er or electrical device.

program The list of instructions that tells the PC the sequence of control actions to be
carried out.

Programmable Controller A computerized device that can accept inputs from external devices and gen-
erate outputs to external devices according to a program held in memory.
Programmable Controllers are used to automate control of external devices.

programmed alarm An alarm given as a result of execution of an instruction designed to gener-
ate the alarm in the program as opposed to one generated by the system.

programmed error An error arising as a result of execution of an instruction designed to gener-
ate the error in the program as opposed to one generated by the system.

programmed message A message generated as a result of execution of an instruction designed to
generate the message in the program as opposed to one generated by the
system.

Programming Console The simplest form or Programming Device available for a PC. Programming
Consoles are available both as hand-held models and as CPU-mounting
models.

Glossary

210

Programming Device A peripheral device used to input a program into a PC or to alter or monitor a
program already held in the PC. There are dedicated programming devices,
such as Programming Consoles, and there are non-dedicated devices, such
as a host computer.

PROGRAM mode A mode of operation that allows for inputting and debugging programs but
that does not permit normal execution of the program.

PROM Writer A Peripheral Device used to write programs and other data into a ROM for
permanent storage and application.

prompt A message or symbol that appears on a display to request input from the op-
erator.

PV Short for present value.

refresh The process of updating output status sent to external devices so that it
agrees with the status of output bits held in memory and of updating input
bits in memory so that they agree with the status of inputs from external de-
vices.

relay-based control The forerunner of PCs. In relay-based control, groups of relays are wired to
each other to form control circuits. In a PC, these are replaced by program-
mable circuits.

Remote I/O Master Unit The Unit in a Remote I/O System through which signals are sent to all other
Remote I/O Units. The Remote I/O Master Unit is mounted either to a
C200H, C500, C1000H, or C2000H CPU Rack or an Expansion I/O Rack
connected to the CPU Rack. Remote I/O Master Unit is generally abbreviated
to simply “Master.”

Remote I/O Slave Unit A Unit mounted to a C200H, C500, C1000H, or C2000H Backplane to form a
Slave Rack. Remote I/O Slave Unit is generally abbreviated to simply
“Slave.”

Remote I/O System A C200H, C500, C1000H, or C2000H system in which remote I/O points are
controlled through a Master mounted to a CPU Rack or an Expansion I/O
Rack connected to the CPU Rack. K-type PCs can be connected to Remote
I/O Systems through I/O Link Units.

Remote I/O Unit Any of the Units in a Remote I/O System. Remote I/O Units include Masters,
Slaves, Optical I/O Units, I/O Link Units, and Remote Terminals.

reset The process of turning a bit or signal OFF or of changing the present value of
a timer or counter to its set value or to zero.

return The process by which instruction execution shifts from a subroutine back to
the point from which the subroutine was called. A return is automatic upon
completion of the subroutine and the return is always to.

reversible counter A counter that can be both incremented and decrement depending on a spe-
cified condition(s).

reversible shift register A shift register that can shift data in either direction depending on a specified
condition(s).

Glossary

211

right-hand instruction Another term for terminal instruction.

rightmost (bit/word) The lowest numbered bits of a group of bits, generally of an entire word, or
the lowest numbered words of a group of words. These bits/words are often
called least significant bits/words.

RUN mode The operating mode used by the PC for normal control operations.

scan time See cycle time.

self diagnosis A process whereby the system checks its own operation and generates a
warning or error if an abnormality is discovered.

self-maintaining bit A bit that is programmed to maintain either an OFF or ON status until set or
reset by a specific condition(s) different from the one that originally caused
the bit to turn OFF or ON.

servicing The process whereby the PC provides data to or receives data from external
devices or remote I/O or otherwise handles data transactions for Link Sys-
tems.

set The process of turning a bit or signal ON.

set value The count from which a counter starts counting down (or, in the case of a
reversible counter, the maximum count) or the time from which a timer starts
timing. Set value is abbreviated SV.

shift register One or more words in which data is shifted in bit, digit, or word units a speci-
fied number of units to the right or left.

Slave Short for Remote I/O Slave Unit.

Slave Rack A C200H, C500, C1000H, or C2000H Rack containing a Remote I/O Slave
Unit and controlled through a Remote I/O Master Unit. Slave Racks are gen-
erally located away from the CPU Rack.

software error An error that occurs in the execution of a program.

software protects A software means of protecting data from being changed as opposed to a
physical switch or other hardware setting.

source The location from which data is taken for use in an instruction as opposed to
the location to which the result of an instruction is to be written. The location
to which the result of an instruction is to be written is called the destination.

SR area A data area in a PC used mainly for flags, control bits, and other information
provided about PC operation. The status of only certain SR bits may be con-
trolled by the operator, i.e., most SR bits can only be read.

subroutine A group of instructions placed after the main program and executed only if
called from the main program or activated by an interrupt.

subroutine number A definer used to identify the subroutine that a subroutine call or interrupt
activates.

Glossary

212

SV Short for set value.

switching capacity The voltage/current that a relay can switch on and off.

syntax error An error in the way in which a program is written. Syntax errors can include
‘spelling’ mistakes (i.e., a function code that does not exit), mistakes in speci-
fying operands within acceptable parameters (e.g., specifying unwritable SR
bits as a destination), and mistakes in actual application of instructions (e.g.,
a call to a subroutine that does not exist).

system error An error generated by the system as opposed to one resulting from execu-
tion of an instruction designed to generate an error.

system error message An error message generated by the system as opposed to one resulting from
execution of an instruction designed to generate a message.

TC area A data area that can be used only for timers and counters. Each bit in the TC
area serves as the access point for the SV, PV, and Completion flag for the
timer or counter defined with that bit.

TC number A definer that corresponds to a bit in the TC area and used to define the bit
as either a timer or a counter.

terminal instruction An instruction placed on the right side of a ladder diagram that uses the final
execution condition on an instruction line(s).

timer A location in memory accessed through a TC bit and used to time down from
the timer’s set value. Timers are turned ON and reset according to their ex-
ecution conditions.

TM area A memory area used to store the results of a trace.

transmission distance The distance that a signal can be transmitted.

TR area A data area used to store execution conditions so that they can be reloaded
later for use with other instructions.

transfer The process of moving data from one location to another within the PC or
between the PC and external devices. When data is transferred, generally a
copy of the data is sent to the destination, i.e., the content of the source of
the transfer is not changed.

UM area The memory area used to hold the active program, i.e., the program that is
being currently executed.

Unit In OMRON PC terminology, the word Unit is capitalized to indicate any prod-
uct sold for a PC System. Though most of the names of these products end
with the word Unit, not all do, e.g., a Remote Terminal is referred to in a col-
lective sense as a Unit. Context generally makes any limitations of this word
clear.

unit number A number assigned to some Link Units and Special I/O Units to assign words
and sometimes other operating parameters to it.

watchdog timer A timer within the system that ensures that the cycle time stays within speci-
fied limits. When limits are reached, either warnings are given or PC opera-
tion is stopped depending on the particular limit that is reached. Although a
default value of 130 ms is automatically set for the basic time limit, this value
can be extended by the program.

Glossary

213

Wired Slave Rack A Slave Rack connected through a Wired Remote I/O Slave Unit.

word A unit of storage in memory that consists of 16 bits. All data areas consists of
words. Some data areas can be accessed by words; others, by either words
or bits.

word address The location in memory where a word of data is stored. A word address must
specify (sometimes by default) the data area and the number of the word that
is being addressed.

work bit A bit in a work word.

work word A word that can be used for data calculation or other manipulation in pro-
gramming, i.e., a ‘work space’ in memory. A large portion of the IR area is
always reserved for work words. Parts of other areas not required for special
purposes may also be used as work words, e.g., I/O words not allocated to
I/O Units.

215

Index

Numbers
16−TO−4 ENCODER − DMPX(77). See instruction set
4−TO−16 DECODER − MLPX(76). See instruction set

A
ADD(30). See instruction set
Always ON/OFF flags. See data areas
Analog Timer Unit. See instruction set
AND. See instruction set
AND LD. See instruction set
AND LOAD. See instruction set
AND NOT. See instruction set
AND NOT − AND NOT. See instruction set
arithmetic operation flags. See data areas

B
backup. See cassette tape operation
Battery Alarm Flag. See data areas
BCD ADD − ADD(30). See instruction set
BCD DIVIDE − DIV(33). See instruction set
BCD MULTIPLY − MUL(32). See instruction set
BCD SUBTRACT − SUB(31). See instruction set
BCD(24). See instruction set
BCD−TO−BINARY CONVERSION − BIN(23). See
instruction set

BIN(23). See instruction set
binary table, 191
BINARY−TO−BCD CONVERSION − BCD(24). See
instruction set

bits
force set/reset, 153
monitor, 150
self maintaining, 60

branching. See ladder diagram

C
Carry Flag. See data areas
cassette tape operation, 157�160
comparing program memory data, 159
error messages, 158
restoring program memory data, 159
saving program memory data, 158

CLC(41). See instruction set
CLEAR CARRY − CLC(41). See instruction set
Clock Pulse Bits. See data areas
CMP(20). See instruction set
CNTR(12). See instruction set
COMPARE − CMP(20). See instruction set
comparing program/memory data. See cassette tape op�
eration

control bits, usage, 10
control system, definition of, 3
Counter − CNT. See instruction set
CPU indicators, 8
cycle time
calculating, 141
components, 140
displaying, 54
for instruction execution, 143, 172
long duration, 140

Cycle Time Error Flag. See data areas

D
data areas
components, 10
Data Memory area, 23
HR, 23
IR
I/O bits available
in CPUs, 14
in Expansion I/O Units, 15

word allocation, 13
SR
Always OFF/ON Flags, 22
arithmetic flags, 22, 189
Battery Alarm Flag, 21
Clock Pulse Bits, 21
Cycle Time Error Flag, 21
Error Flag, 22, 189
First Cycle Flag, 22
high speed drum/counter reset, 21
Step Flag, 22
usage, 21

structure, 10
TC, 23
TR, 24

digit, monitor, 150
DIV(33). See instruction set
DM area. See data areas
DMPX(77). See instruction set

E
END − END(01). See instruction set
END WAIT − ENDW(62). See instruction set
END(01). See instruction set
ENDW(62). See instruction set
Equal Flag. See data areas
Error Flag. See data areas
errors
cassette tape operations, 158
clearing messages, 49
fatal, 163
message tables, 162
non−fatal, 163

Index

216

reading and clearing messages, 162
SR area flags, 164

F
Factory Intelligent Terminal. See Peripheral Devices
First Cycle Flag. See instruction set
FIT. See Peripheral Devices
flags
execution affect, 69
usage, 10

Floppy Disk Interface Unit. See Peripheral Devices

G
GPC. See Peripheral Devices
Graphic Programming Console. See Peripheral Devices
Greater Than Flag. See data areas

H
HDM(61). See instruction set
high−speed drum counter reset. See data areas
HIGH�SPEED DRUM COUNTER − HDM(61). See
instruction set

HIGH�SPEED TIMER − TIMH(15). See instruction
set

HR area. See data areas

I
I/O bits available
in CPUs, 14
in Expansion I/O Units, 15

I/O REFRESH − IORF(97). See instruction set
I/O response time, 145
I/O Units. See Units
IL(02). See instruction set
ILC(03). See instruction set
input bit, definition of, 3
input devices, definition of, 3
input point, definition of, 3
input signal, definition of, 3
instruction set
ADD(30), 120
Analog Timer Unit, 87
AND, 73
combining with OR, 31
use in ladder diagrams, 30

AND LD, 74
combining with OR LD, 35
use in logic blocks, 33

AND NOT, 73
use in ladder diagrams, 30

BCD(24), 115
BIN(23), 115
CLC(41), 125
CMP(20), 112
CNT, 90
changing set value, 156

CNTR(12), 93
DIFD(14)
as a bit control instruction, 75
use in interlocks, 79

DIFU(13)
as a bit control instruction, 75
use in interlocks, 79

DIV(33), 124
DMPX(77), 118
END(01), 32, 81
ENDW(62), 135
HDM(61), 94
IL(02), 78
converting to mnemonic code, 72
use in branching, 42

ILC(03), 78
converting to mnemonic code, 72
use in branching, 42

IORF(97), 135
JME(05), 80
JMP(04), 80
KEEP(11)
as a bit control instruction, 77
controlling bit status, 60

LD, 73
use in ladder diagrams, 30

LD NOT, 73
use in ladder diagrams, 30

MLPX(76), 116
MOV(21), 111
MUL(32), 123
MVN(22), 112
NETW(63), 136
NOP(00), 81
NOT, 28
OR, 73
combining with AND, 31
use in ladder diagrams, 31

OR LD, 74
combining with AND LD, 35
use in logic blocks, 33, 34

OR NOT, 73
use in ladder diagrams, 31

OUT, 75
using to control bit status, 32

OUT NOT, 75
using to control bit status, 32

RDM(60), 103
RET(93), 126
SBN(92), 126
SBS(91), 126
SFT(10), 106
SFTR(84), 109
SNXT(09), 128
STC(40), 125
STEP(08), 128
SUB(31), 122
TIM, 83
changing set value, 156

TIMH(15), 86
WSFT(16), 110

INTERLOCK − IL(02). See instruction set
INTERLOCK CLEAR − ILC(03). See instruction set
IORF(97). See instruction set

Index

217

IR area. See data areas

J
JME(05). See instruction set
JMP(04). See instruction set
JUMP − JMP(04). See instruction set
JUMP END − JME(05). See instruction set

K
KEEP(11). See instruction set

L
ladder diagram
branching
use of, 39
using IL(02) and ILC(03), 42
using JMP(04) and JME(05), 43
using TR bits, 40

converting to mnemonic code, 28�44
instructions
combining
AND and OR, 31
AND LD and OR LD, 35

controlling bit status
using DIFU(13) and DIFD(14), 75
using KEEP(11), 60, 77
using OUT and OUT NOT, 32, 75

format, 68
function of, 26
notation, 68

operands, function of, 27
structure of, 27
using logic blocks, 32

Ladder Support Software. See Peripheral Devices
LD. See instruction set
LD NOT. See instruction set
LEDs. See CPU indicators
leftmost, definition, 11
Less Than Flag. See data areas
Link Units. See Units
LOAD − LD. See instruction set
LOAD NOT − LD NOT. See instruction set
logic blocks. See ladder diagram
LSS. See Peripheral Devices

M
memory areas
data areas. See data areas
definition of, 10
program memory. See program memory

MLPX(76). See instruction set
mnemonic code, converting, 28�44
MOV(21). See instruction set
MOVE − MOV(21). See instruction set
MOVE NOT − MVN(22). See instruction set

MUL(32). See instruction set
MVN(22). See instruction set

N
NETW(63). See instruction set
NO OPERATION − NOP(00). See instruction set
NOP(00). See instruction set
NOT. See instruction set
NOTATION INSERT − NETW(63). See instruction set

O
OR. See instruction set
OR LD. See instruction set
OR LOAD. See instruction set
OR NOT. See instruction set
OR NOT − OR NOT. See instruction set
output bit, definition of, 3
output devices, definition of, 3
output points, definition of, 3
output signal, definition of, 3

P
Peripheral Devices, 5
Factory Intelligent Terminal (FIT), 6
standard models, 169

Floppy Disk Interface Unit, 6
Graphic Programming Console (GPC), 5
standard models, 169

Ladder Support Software (LSS), 5
Printer Interface Unit, 6
Programming Console, 5, 44
clearing memory, 47
modes of, 45
operation of, 46
the keyboard, 44

PROM Writer, 6
standard models, 170

Printer Interface Unit. See Peripheral Devices
program execution, 65
Program Memory, 10
See also memory areas
structure, 29

programming
console operations in table form, 183
debugging, 148
displaying and clearing error messages, 148
inputting, modifying and checking, 49
inserting and deleting instructions, 57
instruction table, 171
instructions. See Instruction set
method, 4
overwriting existing programs, 51
precautions, 63
searching the program, 55
setting and reading from memory address, 50

Programming Console. See Peripheral Devices

Index

218

PROM Writer. See Peripheral Devices

R
RDM(60). See instruction set
restore. See cassette tape operation
RET(93). See instruction set
RETURN − RET(93). See instruction set
REVERSIBLE COUNTER − CNTR(12). See instruc�
tion set

REVERSIBLE DRUM COUNTER − RDM(60). See
instruction set

REVERSIBLE SHIFT REGISTER − SFTR(84). See
instruction set

rightmost, definition, 11

S
SBN(92). See instruction set
SBS(91). See instruction set
SET CARRY − STC(40). See instruction set
SFT(10). See instruction set
SFTR(84). See instruction set
SHIFT REGISTER − SFT(10). See instruction set
SINGLE STEP − STEP(08). See instruction set
SNXT(09). See instruction set
Special I/O Units. See Units
SR area. See data areas
standard models
DIN Units, 169
Factory Intelligent Terminal, 169
Graphic Programming Console, 169
I/O Units, 167
K−type CPUs, 166
Peripheral Devices, 170
Special Units, 168

status indicators. See CPU indicators

STC(40). See instruction set
Step Flag. See data areas
STEP START − SNXT(09). See instruction set
STEP(08). See instruction set
SUB(31). See instruction set
SUBROUTINE ENTER − SBS(91). See instruction set
SUBROUTINE START − SBN(92). See instruction set

T
TC area. See data areas
TIM. See instruction set
TIMH(15). See instruction set
TR area. See data areas
TR bits
converting to mnemonic code, 71
use in branching, 40

U
UM area. See program memory
Units
definition of, 3
I/O Units, definition of, 3
Link Units, definition of, 4
Special I/O Units, definition of, 4

W
words, I/O, 13
WORDSHIFT − WSFT(16). See instruction set
work bits, usage, 10
work words, usage, 10
writing a program
See also programming
steps, 26

WSFT(16). See instruction set

	TABLE OF CONTENTS
	PRECAUTIONS
	SECTION 1
	SECTION 2
	SECTION 3
	SECTION 4
	SECTION 5
	SECTION 6
	SECTION 7
	SECTION 8
	Appendix
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G

	Glossary
	Index

